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Preface

The Benjamin notes which I published (in French) in 1966 on the
cohomology of groups provided missing chapters to the Artin-Tate
notes on class field theory, developed by cohomological methods.
Both items were out of print for many years, but recently Addison-
Wesley has again made available the Artin-Tate notes (which were
in English). It seemed therefore appropriate to make my notes on
cohomology again available, and I thank Springer-Verlag for pub-
lishing them (translated into English) in the Lecture Notes series.

The most basic necessary background on homological algebra
is contained in the chapter devoted to this topic in my Algebra
(derived functors and other material at this basic level). This ma-
terial is partly based on what have now become routine construc-
tions (Eilenberg-Cartan), and on Grothendieck’s influential paper
[Gr 59], which appropriately defined and emphasized §-functors as
such.

The main source for the present notes are Tate’s private papers,
and the unpublished first part of the Artin-Tate notes. The most
significant exceptions are: Rim’s proof of the Nakayama-Tate the-
orem, and the treatment of cup products, for which we have used
the general notion of multilinear category due to Cartier.

The cohomological approach to class field theory was carried out
in the late forties and early fifties, in Hochschild’s papers [Ho 50a],
[Ho 50b], [HoN 52], Nakayama [Na 41], [Na 52], Shafarevich [Sh 46],
Weil’s paper [We 51], giving rise to the Weil groups, and seminars
of Artin-Tate in 1949-1951, published only years later [ArT 67].

As I stated in the preface to my Algebraic Number Theory, there



are several approaches to class field theory. None of them makes
any other obsolete, and each gives a different insight from the oth-
ers.

The original Benjamin notes consisted of Chapters I through IX.
Subsequently I wrote up Chapter X, which deals with applications
to algebraic geometry. It is essentially a transcription of weekly
installment letters which I received from Tate during 1958-1959. I
take of course full responsibility for any errors which might have
crept in, but I have made no effort to make the exposition anything
more than a rough sketch of the material. Also the reader should
not be surprised if some of the diagrams which have been qualified
as being commutative actually have character -1.

The first nine chapters are basically elementary, depending only
on standard homological algebra. The Artin-Tate axiomatization
of class formations allows for an exposition of the basic properties of
class field theory at this elementary level. Proofs that the axioms
are satisfied are in the Artin-Tate notes, following Tate’s article
[Ta 52]. The material of Chapter X is of course at a different level,
assuming some knowledge of algebraic geometry, especially some
properties of abelian varieties.

I thank Springer Verlag for keeping all this material in print. I
also thank Donna Belli and Mel Del Vecchio for setting the manu-
script in AMSTeX, in a victory of person over machine.

Serge Lang
New Haven, 1995



CHAPTER 1

Existence and Uniqueness

§1. The abstract uniqueness theorem

We suppose the reéader is familiar with the terminology of abelian
categories. However, we shall deal only with abelian categories
which are categories of modules over some ring, or which are ob-
tained from such in some standard ways, such as categories of com-
plexes of modules. We also suppose that the reader is acquainted
with the standard procedures constructing cohomological functors
by means of resolutions with complexes, as done for instance in

my Algebra (third edition, Chapter XX). In some cases, we shall
summarize such constructions for the convenience of the reader.

Unless otherwise specified, all functors on abelian categories
will be assumed additive. What we call a é-functor (following
Grothendieck) is sometimes called a connected sequence of func-
tors. Such a functor is defined for a consecutive sequence of inte-
gers, and transforms an exact sequence

0—-A—-B—-C—0
into an exact sequence
. — HP(A) — H?(B) — H?(C) LA HPY(A) — -

functorially. If the functor is defined for all integers p with
—00 < p < 00, then we say that this functor is cohomological.



Let H be a é-functor on an abelian category 2A. We say that
H is erasable by a subset 9t of objects in A if for every A in
A there exists M4 € M and a monomorphism ¢4 : A — My
such that H(M4) = 0. This definition is slightly more restrictive
than the usual general definition (Algebra, Chapter XX, §7), but its
conditions are those which are used in the forthcoming applications.
An erasing functor for H consists of a functor

M:A— M(A)

of 2 into itself, and a monomorphism € of the identity in M, i.e.
for each object A we are given a monomorphism

EA:A—PMA

such that, if u : A — B is a morphism in 2, then there exists a
morphism M(u) and a commutative diagram

0 - A 4 » M(A)

0 » B » M(B)

€B

such that M(uv) = M(u)M (v) for the composite of two morphisms
u,v. In addition, one requires H(M4) =0 for all A € A.

Let X(A) = X4 be the cokernel of 4. For each u there is a
morphism

X(u): X4 — Xp

such that the following diagram is commutative:

0 » A » My Xy — 0
ul lM(u) lX(u)
0 +» B Mp » Xg —— 0,

and for the composite of two morphisms u,v we have X(uv) =
X(u)X(v). We then call X the cofunctor of M.

Let po be an integer, and H = (H?) a é-functor defined for
some values of p. We say that M is an erasing functor for H in
dimension > pg if H?(M4) =0 for all A € 2 and all p > py.
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We have similar notions on the left. Let H be an exact é-functor
on A. We say that H is coerasable by a subset 9 if for each object
A there exists an epimorphism

na:Ms— A

with M4 € 9, such that H(M4) = 0. A coerasing functor M
for H consists of an epimorphism of M with the identity. If n is
such a functor, and v : A — B is a morphism, then we have a
commutative diagram with exact horizontal sequences:

0 » Ya >y My —2 5 A » 0
Y(u)J. J'M(u) lu
0 > YB — IWB » B » 0
nB

and Y4 is functorial in A, i.e. Y(uv) = Y (u)Y (v).

Remark. In what follows, erasing functors will have the addi-
tional property that the exact sequence associated with each object
A will split over Z, and therefore remains exact under tensor pro-
ducts or hom. An erasing functor into an abelian category of
abelian groups having this property will be said to be splitting.

Theorem 1.1. First uniqueness theorem. Let 2 be an
abelian category. Let H, F be two é-functors defined in degrees
0,1 (resp. 0,—1) with values in the same abelian category. Let
(¢0,91) and (po,p1) be 6-morphisms of H into F, coinciding in
dimension 0 (resp. (¢—1,%0) and (¢—1,90)). Suppose that H?
is erasable (resp. H™! is coerasable). Then we have ©1 = @

(resp. -1 = @-1).

Proof. The proof being self dual, we give it only for the case of
indices (0,1). For each object A € 2 we have an exact sequence

0= A—-My4y—X4—0

and H'(M4) = 0. There is a commutative diagram

HO(M,) —— HY(Xa) —Z— HYA) —— 0

wko ‘Pol ltpwﬁl

FHMy) — FUE ) —Es FHA] —— 0



with horizontal exact sequences, from which it follows that §g is
surjective. It follows at once that ¢; = ;.

In the preceding theorem, ¢; and @, are given. One can also
prove a result which implies their existence.

Theorem 1.2. Second uniqueness theorem. Let 2 be an
abelian category. Let H,F be §-functors defined in degrees (0,1)
(resp. 0,—1) with values in the same abelian category. Let

o : H® = FO be a morphism. Suppose that H' is erasable by
injectives (tesp. H ™! is coerasable by projectives). Then there
ezists a unique morphism

1: H' — F' (resp. p_; : H™! — F71)

such that (o, 1) (Tesp. (po,p-1)) is also a §-morphism. The
association pg — @1 18 functorial in a sense made ezxplicit below.

Proof. Again the proof is self dual and we give it only in the
cases when the indices are (0,1). For each object A € 2 we have
the exact sequence

0—>A—>1WA -—PXA—>0
and H!(M4) = 0. We have to define a morphism
o1(4) - H(A) — FY(4)

which commutes with the induced morphisms and with §. We have
a commutative diagram

HY(M,) —— HY(X4) —2— HY(4) —— 0

ﬁpol ‘POJ'
FO(My) —— F°%X,) ——t F1(A)

F

with exact horizontal sequences. The right surjectivity is just the
erasing hypothesis. The left square commutativity shows that
Ker 6y 1s contained in the kernel of § p¢o(X 4). Hence there exists
a unique morphism

p1(A) - H'(4) — F'(4)
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which makes the right square commutative. We shall prove that
¢1(A) satisfies the desired conditions.

First, let u : A — B be a morphism. From the hypotheses, there
exists a commutative diagram

0 »y A » My ——— X4 — 0
ul lM(u) lX(u)
0 » B + Mp —— Xp —— 0

the morphism M(u) being defined because M4 is injective. The
morphism X (u) is then defined by making the right square com-
mutative. To simplify notation, we shall write u instead of M(u)
and X (u).

We consider the cube:

by
H(X4 H'(A)
%l . w(A)l H'(u)
FO(XA) - FI(A)pl(u)
HO(u) -
V(&) < H1(B)
FO(u) 1(B)
I b
F°(Xp) H(B)

We have to show that the right face is commutative. We have:

o1(B)H (u)on = p1(B)6n H (u)
= 6ppoH (u)
= 8 F(u)po
= F'(u)éFyo
= F'(u)p1(A)én.
We have used the fact (implied by the hypotheses) that all the

faces of the cube are commutative except possibly the right face.
Since §y is surjective, one gets what we want, namely

¢1(B)H' (u) = F' (u)p1(A).



The above argument may be expressed in the form of a useful
general lemma.

If, in a cube, all the faces are commutative ezcept possibly one,
and one of the arrows as above 13 surjective, then this face is
also commutative.

Next we have to show that ¢; commutes with 8, that is (o, 1)
is a 6-morphism. Let

0—-A'5A4A—-54">0
be an exact sequence in A. Then there exist morphisms

v:A— My and w:A" - Xy

making the following diagram commutative:

0 y A y A —— AT — 0
o b
0 — A’ > MAI —_—) XA’ _—) 0

because M4/ is injective. There results the following commutative
diagram:

HO(AH)
Yo
H°(w) oH
FO(AII)
SH
HO(X 40) H'(A")
Yo b ‘P!(A’)
FO(w)
F(X4) F1(A)

SF
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We have to show that the right square is commutative. Note
that the top and bottom triangles are commutative by definition of
a 6-functor. The left square is commutative by the hypothesis that
©o 1s a morphism of functors. The front square is commutative by

definition of ¢;(A’). We thus find

01(A)én = o1(A )y H(w) (top triangle)

= 6ppoH(w) (front square)
= 6rpF%(w)po (left square)
= 6ro (bottom triangle),

which concludes the proof.

Finally, let us make explicit what we mean by saying that ¢,
depends functorially on . Suppose we have three functors H, F, E
defined in degrees 0,1; and suppose given @o : H® — F° and
Yo : F® — E°. Suppose in addition that the erasing functor erases
both H' and F'!. We can then construct ¢; and v¥; by applying
the theorem. On the other hand, the composite

‘(/)()(po =90 : HO e EO

i1s also a morphism, and the theorem implies the existence of a
morphism

6, : H — E!
such that (6,6;) is a §-morphism. By uniqueness, we obtain

61 = 1 0 1.
This is what we mean by the assertion that ¢; depends functorially
on @g.

§2. Notation, and the uniqueness theorem in Mod(G)

We now come to the cohomology of groups. Let G be a group.
As usual, we let Q and Z denote the rational numbers and the

integers respectively. Let Z[G] be the group ring over Z. Then
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Z[G] is a free module over Z, the group elements forming a basis
over Z. Multiplicatively, we have

(Z aaa) (Z b,r) - Yo

c€G T€EG

the sums being taken over all elements of G, but only a finite
number of a, and b, being # 0. Similarly, one defines the group
algebra k[G] over an arbitrary commutative ring k.

The group ring is often denoted by I' = I'. It contains the ideal
I which is the kernel of the augmentation homomorphism

e:Z[G] - Z
defined by € (3 ns0) = > n,. One sees at once that Ig is Z-free,
with a basis consisting of all elements o — e, with o ranging over the

elements of G not equal to the unit element. Indeed, if E e = 0,
then we may write

Zn,a = Z ne(oc —e).

Thus we obtain an exact sequence
0— I —>Z[G]| - Z—0,

used constantly in the sequel. The sequence splits, because Z[G] is
a direct sum of Ig and Z - e (identified with Z).

Abelian groups form an abelian category, equal to the category
of Z-modules, denoted by Mod(Z). Similarly, the category of mod-
ules over a ring R will be denoted by Mod(R).

An abelian group A is said to be a G-module if one is given an
operation (or action) of G on A; in other words, one is given a map

GxA— A
satisfying

(o7)a = o(7a) e-a=a o(a+b) =o0a+ ob
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for all 0,7 € G and a,b € A. We let e = eg be the unit element of
G. One extends this operation by linearity to the group ring Z[G].
Similarly, if k is a commutative ring and A is a k-module, one
extends the operation of G on A to k[G] whenever the operation
of G commutes with the operation of k on A. Then the category
of k[G]-modules is denoted by Modi(G) or Mod(k, G).

The G-modules form an abelian category, the morphisms being
the G-homomorphisms. More precisely, if f : A — B is a morphism
in Mod(Z), and if A, B are also G-modules, then G operates on

Hom(A, B) by the formula
(cf)(a) =0o(f(c™'a)) for a€ A and o€G.

If there is any danger of confusion one may write [o]f to denote this
operation. If [¢]f = f, one says that f is a G-homomorphism,
or a G-morphism. The set of G-morphisms from A into B is an
abelian group denoted by Homg (A4, B). The category consisting
of G-modules and G-morphisms is denoted by Mod(G). It is the
same as Mod(T'g).

Let A € Mod(G). We let A® denote the submodule of 4 con-
sisting of all elements a € A such that ca = aforallc € G. In
other words, it is the submodule of fixed elements by G. Then A¢
is an abelian group, and the association

HY: A AC

is a functor from Mod(G) into the category of abelian groups, also
denoted by Grab. This functor is left exact.

We let »x¢ denote the canonical map (in the present case the
identity) of an element a € A® into HX(A).

Theorem 2.1. Let Hg be a cohomological functor on Mod(G)
with values in Mod(Z), and such that HY is defined as above.
Assume that HL(M) = 0 if M is injective and r > 1. Assume
also that HL,(A) = 0 for A € Mod(G) and r < 0. Then two such
cohomological functors are isomorphic, by a unique morphism
which is the identity on HE(A).

This theorem is just a special case of the general uniqueness theo-
rem.
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Corollary 2.2. If G = {e} then HZ(A) =0 for allT > 0.

Proof. Define Hg by letting H(A) = A® and HL(A) = 0 for
r # 0. Then it is immediately verified that Hg is a cohomological
functor, to which we can apply the uniqueness theorem.

Corollary 2.3. Letn € Z and letny : A — A be the morphism
a— na fora € A. Then H;(na) = ng (where H stands for

H;(4)).

Proof. Since the coboundary ¢ is additive, it commutes with
multiplication by n, and again we can apply the uniqueness theo-
rem.

The existence of the functor Hg will be proved in the next sec-
tion.

We say that G operates trivially on A if A = A®, that is
ca = a for all a € A and 0 € G. We always assume that G
operates trivially on Z, Q, and Q/Z.

We define the abelian group

Ag = A/IAg.

This is the factor group of A by the subgroup of elements of the
form (o — e)a with ¢ € G and a € A. The association

A Ag
is a functor from Mod(G) into Grab.

Let U be a subgroup of finite index in G. We may then define
the trace

SZ : AV — AS by the formula  S%(a) = Z ca,

where {c} is the set of left cosets of U in G, and ¢ is a representative
of ¢, so that
G=|Je.
c
If U = {e}, then G is finite, and in that case the trace is written

Sg, so
Sg(a) = Z oa.
c€G
For the record, we state the following useful lemma.



