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Preface

This symposium, held at Innsbruck/Igls on June 21-26, 1987, is the fifth in a series of
IUTAM-Symposia on the application of stochastic methods in mechanics. The first two
meetings in Warwick (1972) and Southhampton (1976) concentrated on the stability of
stochastic dynamical systems and stochastic methods in dynamics, respectively. The
third meeting in Frankfurt/Oder (1982) added aspects of reliability, while the fourth
symposium in Stockholm (1984) dealt mainly with fatigue and fracture problems. The
general theme of the present symposium is devoted to nonlinear stochastic dynamics of
engineering systems which is believed of great importance for providing the tools for
basic development and progress in various fields of mechanical-, structural- and
aeronautical engineering, particularly in the areas of vehicle dynamics, multi-storey
structural dynamics, systems identification, offshore structural dynamics, nuclear
structures under various stochastic loading conditions (i.e. wind-, earthquake-,
parametric excitations, etc.). The contributions collected in this volume cover a wide
spectrum of topics ranging from more theoretical, analytical and numerical treatment to
practical application in various fields. The truly international character of the meeting is
accomplished by 42 contributions and 86 participants from as many as 19 countries and
hence, contributed to the original idea of IUTAM, which is to foster international
cooperation. It should be recalled, that, for getting this cooperation started again after the
First World War, Theodore von K4rmén and Tullio Levi-Civita called the world's first
international (IUTAM) conference on hydro- and aeromechanics in 1922 in Innsbruck,
Austria.

We are indebted to the IUTAM Bureau for the allocation of financial support to
participants and would like to express our gratitude to Austrian and German companies
and government agencies listed above for their generous financial support to make this
meeting possible. Last not least we thank the Scientific Committee who took the burden
in helping to select the presentations from a large number of excellent contributions. The
major credit, however, goes to the authors who's excellent presentations and papers
made the meeting a successful one.

F.Ziegler, Wien
G. I. Schuéller, Innsbruck
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Accdracy and Limitations of the Method
of Equivalent Linearization for Hysteretic
Multi-Storey Structures

H.). PRADLWARTER and G.I. SCHUELLER

Institute of Engine'e'ring Mechanics, University of Innsbruck'
A-6020 Innsbruck, Technikerstrasse 13, AUSTRIA

SUMMARY

A method of solution for determing the response statistics of a nonlinear hysteretic shear
building subjected to nonstationary stochastic excitation is suggested by utilizing a
stochastic equivalent linearization technique. This paper concentrates on the accuracy of
the predicted response for an e£citation ranging from low to high intensity and on the
computational efficiency of the time step procedure. The nonlinear hysteretic properties of
the shear building are modelled by Bouc's [1] model in terms of auxiliary variables
following nonlinear differential equations. The auxiliary variables are linearized leading to
a set of linear differential equations. They are solved numerically using the state v
formulation and a complex modal analysis time-step procedure in order to consider the
time varying linearization coefficients. The procedure is applied to a six storey shear
building with no residual linear stiffness to demonstrate the applicability to this special
case. For the numerical efficiency of the time step procedure, a generalized
Jacobi-iteration is suggested to solve in each time step efficiently the characteristic valde
problem. The predicted variances are then compared with the variances obtained by
applying simulations procedures. The agreement is excellent for the velocity response,
but less satisfactory for the displacement response. Finally, probability densities of
.response quantities are shown (based on 3000 simulated samples).

INTRODUCTION

Due to the severity of the loading conditions caused by earthquakes, sea waves or strong
winds, structures may respond nonlinearly when subjected to these natural hazards. In
addition, the loading characteristics reveal statistical properties and, consequently, they
have to be modeled by stochastic processes. Thus, the stochastic properties of the
nonlinear structural response need to be evaluated. In order to be useful for practical '
application, the analysis has to meet the following requirements:

(a) the procedure should apply to general nonstationary excitation ’characterisﬁcs to be
described by evolutionary spectra, ‘

(b) the procedure should be applicable to any type of structure discretized by a
MDOF-system.

F. Ziegler, G. 1. Schuéller, (Eds.)
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(c) the computational efforts required to obtain the response statistics should be
considerable less than those needed for Monte Carlo simulative procedures.

For nonlinear systems, these requirements can only be met partially. The most severe
discrepancy between requirement and capabilities of methods presently available holds for
item (b). In fact, almost all procedures to evaluate the nonlinear stochastic response, such
as those based on Fokker-Planck equation [2] and closure techniques [3] etc., are only
applicable if the structure can be idealized by one, or at best, by very few degrees of
freedom. Alternative approaches, such as the pertubation method, are restricted to weakly
nonlinear structures and are therefore not suitable to treat the extreme range of loading
effects which is needed for reliability analyses.

An approach with the highest potential to satisfy all three of necessities as stated above is
the method of stochastic equivalent linearization. Hence its application to a hysteretic
shear building subjected to nonstationary excitaton is addressed in this paper. Although
stochastic equivalent linearization is regarded as most suitable for practical applications,
its shortcomings should be pointed out nevertheless. One basic drawback of the approach
is, that only second moment properties of the reéponse quantities are obtained. Since the
nonlinear response is known to be non-Gaussian, the obtained quantities are insufficient
for a complete characterization of the response. Another shortcoming is its restriction to
quite simple structures such as the shear beam models. A closer investigation shows that
this limitation is not due to the characteristics of the solution technique, but to insufficient
knowledge to describe the hysteretic behavior of more complex structures by constitutive
laws which are simple enough to be linearized by the stochastic equivalent linearization
technique.

Among all methods available within the framework of the equivalent linearization
technique, complex modal analysis has been found to be most suitable to calculate the
response of systems consisting of a large number of degrees of freedom. A particular
advantage of the method when compared with other approaches, such as the use of the
Lyapunov equation [4], [5], which for computational reasons, is in practice limited to the
order of ten degrees of freedom - is its capability to incorporate evolutionary spectral
excitation. This is very important when dealing with earthquake problems, where the low
frequency content contributes significantly to the plastic deformation (drift). Another
useful property of the approach is - similarly as for linear systems - the possibility of
neglecting higher modes. The present invesﬁgadon is focused on the accuracy of the
predicted second moments for a wide range of excitation and on the computational
efficiency of the time step procedure. Such an investigation is urgently needed, since
most of the procedures available addressing the accuracy apply either for stationary
excitation or SDOF-systems only. Only a recent work [6] compares the predicted results



for a six storey shear building under nonstationary excitation with simulated results.
However, the applied excitation might be classified as weak where the structure reacts
basically linearly, and hence the reported good agreement has to be expected. Another
important aspect is the computational efficiency of the time step procedure, which
becomes more essential with increasing number of degrees-of-freedom.

HYSTERETIC SHEAR BEAM MODEL AND ITS LINEARIZATION

In the study as presented here, a hysteretic multi-storey structure is idealized by a simple
coupled N-degree of freedom shear beam model subjected to horizontal ground
acceleration ag as shown in Fig. 1. The i-th restoring force,'acting between the masses
m;_; and my, is represented by

g, =aku. + (i;gi) kizi ; . 1€isN | )

where k; and u; reirrgsem the i-th stiffness and relative displécemgm,

u=d-d 1<i<N @

i1’
respectively. The parameter d; denote the displacements of the i-th mass m, relative to the
ground. The term (1-0;)k;z; models the i-th nonlinear hysteretic restoring force q; N -
The factor o, (0 < o < 1), defines the participation of a linear restoring force kju; within
the total restoring force g;. The hysteretic behavior of the nonlinear restoring force g; N
is described by the auxiliary variable z; with the dimension of displacements. Using the
smooth hysteretic model as proposed first by Bouc [1], and later generalized by Wen [4],
the auxiliary variable z; is governed by the following nonlinear differential equation

n.-1 n,
S . X )
zl_NL—Aiul-Biluillzil zi-'yiuilzill 3)

where Aj, B, ¥; and n; are parameters which control the shape of the hysteretic loops.
The reader is referred to [4] and [5] for the salient variability of this model, capable to
represent a wide class of hysteretic behavior including degradétidn effects and in close
approximation such special cases as elasto-plastic hysteresis and the Coulomb slip model.

The restoring force law in eq. (1) is linear in u; and z;. In order to replace the nonlinear
restoring force by a stochastic equivalent linear restoring force, only eq. (3) needs to be
linearized. Since the right-hand side of €q.(3) is a function of the two variables u; and z;
only, the linearized version of eq.(3) must be of the form,



z, = c(_’i u + k'": zy “@

where c,; and ke; depend on the nonstationary stochastic response of the linearized structural
system. The linearization coefficients ¢,; and k; are found by minimizing the difference
function

&TLNLEL ®

with zespect to co; and kej, which is equivalent to

JEE]  IEE]] . ©
a:e. &&

1 1

leading to two linear equations with respect to c,; and ke;. Under the assumption that i; and ‘
z; are jointly Gaussian, both with zero mean, Atalik and Utku [7] showed that the
linearization coefficients can be derived from the following relation:

cei=E[aziM_/3ul] and kei=E[Bszlazi] ' Q)]
From this, a closed form solution is obtained [4]:

c =A.-B.F.-‘Y.F.
e i Tioh T2 ®

kef'BiFsi'yiFﬁ

where

n+2 . on+1
F1i=T’I‘(—'—)22 L; p.=.ir(‘—2-)22; ;i=2j'smll‘¢d¢
s

2. i 2i ﬁ
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l'li 1 2
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Considering all forces acting on the i-th mass, the equation of motion is defined by the
following relation:

md +cu .., +9,-q,,=-ma (10)

i+17 141 ig

If the relation d; = uy +ug + ... + u;_1 + uj is used, eq. (10) can be written in the following
matrix form:

[M] (U} +[C] (U} + (K] {U} +[G] {2} =- [Mo] (1) 2, ® 1

The above matrices of dimension N have the following non-zero coefficients [6],

MijJSi =m; Cu,]q acm C = a m, + B k C1,i<|.1 =- Bcki-l»l
K=ok K= %Ki G=1-a)k 12
Gii=-(-o )k, Mo,=m

where 0, and B, are constants approximating the viscous damping and (I} is the unit vector,
ie. (BT = (1,1,.,1,17T.

Finally the linearized restoring force law of eq. (4) is represented in matrix form:

(z}=[c] (U) + K] {2} (13)

where the matrices [C,] and [K,] are diagonal matrices with the components



C =c and K =k i (14)
[ C.. C.

COMPLEX MODAL ANALYSIS

In this section, the evaluation of the statistical response of a linearized hysteretic system
subjected to nonstationary excitation is considered. As pointed out in the following, for
several reasons the complex modal analysis is thought to be most suitable to calculate the
nonstationary second moments of MDOF-system responses. In particular:

(a) it can be applied to MDOF-systems with a fairly large number N of degrees of
freedom. For realistic levels of excitation the second moments can be calculated with
sufficient accuracy by considering merely the first N+2p eigenpairs instead of all 3N
eigenpairs, where p <N. :

(b) modal analysis is suitable for colored stochastic excitation. This feature is important,
since it is well known that the low frequency content of the excitation contributes
significantly to the drift, i.e. the remaining plastic displacements.

(c) modal analysis is applicable to cases of strongly yielding systems with no residual
linear stiffness, i.e. o¢; = 0. :

(d) itis suitable for nonstationary excitation as required when dealing with earthquake
problems. Nonstationarity is taken into account by a time step procedure, where a
degrading hysteresis can be easily adopted.

(e) the time step procedure is computationally efficient. The immediate previous
eigenvectors can be used as starting vectors to determine the eigenvectors and
eigenvalues for each subsequent discrete time by requiring few iterations only.

Complex modal analysis utilizes the state vector approach to solve eq. (11) and 13) by an
equivalent first order differential equation system of the form,

[AN{X©} + BONX®} = {1} a® (15)

where the two vectors {X(t)} and {I,} are defined as follows,

(U®) (0)
(x®}=| (0o} and (I} = | M) (16)
() U

and the matrices [A] and [B(1)] consists of subsequent submatrices already defined in the



