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PREFACE TO THE SECOND EDITION

The aim of this second edition is the refinement and improvement of the
text, as well as the incorporation of new data and ideas. The most radical
changes are to be found in a novel and particularly careful derivation of the
Lorentz transformation, and in a somewhat different logic for the develop-
ment of continuum mechanics. In connection with the former I have returned
to the primacy of Einstein's Relativity Principle as opposed to Dixon’s
*Principle of Uniformity’ for inertial frames. Lesser changes have been made
on almost every page, and many paragraphs and even whole sections have
been rewritten. Over 20 new exercises have been added and a few old ones
deleted. Also, I am introducing here a new notation, ds?, for the metric that
is traditionally written as ds® It is to be regarded as the square of the
infinitesimal displacement vector ds = (c dt, dx, dy, dz), so that its possible
negativity does not conflict with the reality and non-negativity of the arc ds,
here regarded as the magnitude of ds

Much of the work for this second edition was done during the Easter
Term at Churchill College, Cambridge. I would like to thank the Fellows of
the College and, in particular, the Master, Sir Hermann Bondi, for their
stimulating hospitality. B

Cambridge W.R.
July 1990
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PREFACE TO THE FIRST EDITION

Apart from being a vehicle for communicating my joy in the subject, this
book is intended to serve as a text for an introductory course on special
relativity, which is rather more conceptually and mathematically than
experimentally oriented. In this context it should be suitable from the upper
undergraduate level onwards. But the book might well.be used autodidactively
by a somewhat more advanced reader. It assumes no prior knowledge of
relativity. Thus it elaborates the underlying logic, dwells on the subtleties
and apparent paradoxes, and also contains a large collection of problems
which should just about cover all the basic mé&des of thinking and calculating
jn special relativity. Much emphasis has been laid on developing the student’s
ihtuition for space-time geometry and four-tensor calculus. But the approach
is not so dogmatically four-dimensional that three-dimensional methods are
tejected out of hand when they yield a result more directly. Such methods,
too, belong to the basic arsenal even of experts.

In fact, the viewpoint in the first three chapters is purely three-dimensional.
Here the reader will find a simple introduction to such topics as the relativity
of simultaneity, length contraction, time dilation, the twin paradox, and the
appearance of moving objects. But beginning with Chapter 4 (on spacetime)
the strongest possible use is made of four-dimensional techniques.LPure
tensor theory as such is relegated to an appendix, in the belief that it should
really be part of a physicist’s general education. Still, this appendix will serve
as Chapter ‘33" for readers unfamiliar with that theory. ,In Chaptérs 5 and
6—on mechanics and electromagnetism—a purely syhthetic four-tensor
approach is adopted. Not only is this simpler and more transparent than
the historical approach, and a good example of four-dimensional reasoning,
but it also brings the student face to face with the ‘man-made’ aspect of
physical laws. In the last. chapter (on the mechanics of continua), the
synthetic approach is somewhat softened by the well-known analogy with
electromagnetism.

In the discussion of electromagnetism 1 have reluctantly adopted the SI
units now so widely used in spite of their awkwardness for the theoretician.
But I have indicated how the equations can easily be translated into their
Gaussian (c.g.s.) forms in terms of which most relativists think. A commitment
to follow a consistent notation (capital letters for four-dimensional and
lowercase for three-dimensional tensors) resulted im some other awkward-
nesses, such as e and b for the electric and magnetic field vectors and w for
the vector potential (since a was already used for the acceleration). I can
only hope that the reader will give these symbols a try and not automatically
transcribe them.



viii

I should perhaps say a word on the genesis of this book. It has a.
predecessor after which it is loosely structured, namely my Special Relativit ¥
(Oliver & Boyd, 1960), which went out of print in 1975. That little book
seems to have won some faithful friends and there have been frequent
requests for a new edition. But whei I finally attempted such an edition I
realized how much my ideas—and perhaps the subject itself—had changed
and how impossible it was simply to revise the old text. So I found myself
much more pleasantly engaged in writing a new book, this book. though a
few of the old arguments and problems have been taken over and, 1 hope,
some of the old spirit ds well. There are also ties to my Essential Relativity
(Second Edition, Springer-Verlag, 1977). In a number of contexts I became
uneasily aware that I could neither improve upon, nor omit, nor usefully
paraphrase what I have already written there. So eventually (with the
publisher’s kind permission) I decided simply to borrow the relevant passages
verbatim; these may account for a total of about ten pages of the present
book. My conscience was somewhat eased by the fact that, in its time,
Essential Relativity had similarly borrowed from the older Special Relativity.

I clearly owe much to many authors, some by now forgotten. But I would
like to acknowledge the special influence on this book of W. G. Dixon,
J. Ehlers, Z. Papapetrou, R. Penrose, I. Robinson, D. W. Sciama, R. Sexl,
J. L. Synge, H. Weyl, and N. Woodhouse. I also owe a considerable debt to
my students. As just one example I like to recall the innocent class question
‘but what if ... which, many years ago, precipated the ‘length contraction
paradox’— herein included. ’

Dallas W.R.
November 1981
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THE FOUNDATIONS OF SPECIAL
RELATIVITY

1. Introduction

One of the greatest triumphs of Maxwell’s electromagnetic theory (c. 1864)
was the explanation of light as an electromagnetic wave phenomenon. But
waves in what? In conformity with the mechanistic view of nature then
prevailing, it seemed imperative to postulate the existence of a medium—the
ether—which would serve as a carrier for these waves (and for electromagnetic
‘stress” in general). This led to the most urgent physical problem of the time:
the detection of the earth’s motion through the ether.

Of the many experiments devised for this purpose, we shall mention just
three. Michelson and Morley (1887, see Sec. 2), looked for a directional
variation in the velocity of light on earth. Fizeau (1860), Mascart (1872,
and later Lord Rayleigh (1902), looked for an expected effect of the earth’s
motion on the refractive index of certain dielectrics. And Trouton and Noble
[1903, see Ex. VI(11)] tried to detect an expected tendency of a charged plate
condenser to face the ‘ether drift’. All failed. The facile explanation that the
earth might drag the ether along with it only led to other difficulties with
the observed aberration of starlight, and could not resolve the problem.

In order to explain nature’s apparent conspiracy to hide the ether drift,
Lorentz between 1892 and 1909 developed a theory of the ether that was
eventually based on two ad hoc hypotheses: the longitudinal contraction of
rigid bodies' and the slowing down of clocks (‘time-dilation’)? when moving
through the ether at a speed v, both by a factor (1 — v?/c?)'/2, where c is
the speed of light. This would so affect every apparatus designed to measure
the ether drift as to neutralize all expected effects.

In 1905, in the middle of this development, Einstein proposed the principle
of relativity which is now justly associated with his name. Actually Poincaré
had discussed essentially the same principle during the previous year, but it
was Einstein who first recognized its full significance and put it to brilliant
use. In it, he elevated the complete equivalence of all inertial reference frames
to the status of an axiom or principle, for which no proof or explanation is
to be sought. On the contrary, ir explains the failure of all the ether-drift
experiments, much as the principle of energy conservation explains a priori
(i.e. without the need for a detailed examination of the mechanism) the failure
of all attempts to construct a perpetual motion machine.

! Proposed independently by Fitzgerald as early as 1889.
2 Based directly on a feature of Einstein’s special relativity of 1905.



2 THE FOUNDATIONS OF SPECIAL RELATIVITY

At first sight Einstein’s relativity principle seems to be no more than a
whole-hearted acceptance of the null results of all the ether-drift experiments.
But by ceasing to look for special explanations of those results, and using
them rather as empirical evidence for a new principle of nature, Einstein had
turned the tables: predictions could be made. The situation can be compared
to that obtaining in astronomy at the time when Ptolemy’s intricate
geocentric system (corresponding to Lorentz’s ‘etherocentric’ theory) gave
way to the ideas of Copernicus, Galileo, and Newton. In both cases the
liberation from a venerable but inconvenient reference frame ushered in a
revolutionary clarification of physical thought, and consequently led to the
discovery of a host of new and unexpected results.

Soon a whole theory based on Einstein’s relativity principle (and on a
‘second axiom’ asserting the invariance of the speed of light) was in existence,
and this theory is called special relativity. Its programme was to modify all
the laws of physics, where necessary, so as to make them equally valid in all
inertial frames. For Einstein’s principle is really a metaprinciple: it puts
constraitits on all the laws of physics. The modifications suggested by the
theory (&specially in mechanics), though highly significant in many modern
applications, have negligible effect in most classical problems, which is of
course why they were not discovered earlier. However, they were not exactly
needed empirically in 1905 either. This is a beautiful example of the power
of pure thought to leap ahead of the empirical frontier—a feature of all good
physical theories, though rarely on such a heroic scale, .

Today, over eighty years later, the enormous success of special relativity
theory has made it impossible to doubt the wide validity of its basic premises.
It has led, among other things, to a new theory of space and time, and in
particular to the relativity of simultaneity and the existence of a maximum
speed for all particles and signals, to a new mechanics in which mass increases
with speed, t. the formula E = mc?, and to de Broglie’s association of waves
with particles. One of the ironies of these developments is that Newton’s
theory, which had always been known to satisfy a relativity principle within
the classical framework of space and time, now turned out to be in need of
modification, whereas Maxwell’s theory, with its apparent conceptual depen-
dence on a preferred ether frame, came through with its formalism intact—in
itself a powerful recommendation for special relativity.

Apart from leading to new laws, special relativity leads to a useful
technique of problem-solving, namely the possibility of switching reference
frames. This often simplifies a problem. For although the totality of laws is
always the same, the configuration of the problem may be simpler, its
symmetry enhanced, its unknowns fewer, and the relevant subset of phys:cal
laws more convenient, in a judiciously chosen inertial frame.

Our main concern in this chapter will be to set Einstein’s principle in its
proper perspective and té derive from it the so-called Lorentz transformation
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equations, which are the mathematical core of the special theory of relativity.
With their help we can subject the various branches of classical physics to
the test of Einstein’s principle, and with their help, too, find the necessary
modifications where the principle is not satisfied.

2. Schematic account of the Michelson—-Morley experiment

Certainly the most famous of all the experiments designed to measure the
ether drift was that due to Michelson ‘and Morley, first performed in 1887
and repeated many times thereafter. Its essential principle was to split a beam
of light and then to send the two half-beams along orthogonal arms of equal
length, at whose ends mirrors reflected the beams back to the starting point
where they were made to interfere. Then the entire apparatus was rotated
in the plane of the arms. If this causes a differential change in the to-and-fro
light travel times along the two arms, the interference pattern should change.
Suppose originally one of the arms, marked L, in Fig. 1, lies in the direction
of an ether drift of velocity v. Figure 1 should make it clear that the respective
to-and-fro light travel times along the two arms would then be expected to be

L L 2L
n-foy bl T
c+v c—v c(l —v*/c?)
2L, L 2L,

2 (CZ_UZ)I/Z _C(l _UZ/CZ)1/2’

where L, and L, are the purportedly equal lengths of the two arms. Since
T, # T,, a rotation of the experiment through 90° should produce a shift in
the interference fringes. None was ever observed, which seems to imply v = 0.
Yet at some point in its orbit around the sun the earth must move through
the ether with a speed of at least 18 miles per second (its orbital velocity)
and this should have been easily detected by the apparatus. Of course, in
Einstein’s theory, this null result is to be expected a priori: Light propagates

=
v RO
\ .
\ ; 22 ——————i
\ | V(e™=vT) ether
\ I e e e el 1)
(4 LZ ]
\ | i
\ |
\ | e
\\ : ct+v
] e on o - -
Ll
]
c—v
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in all inertial frames, and thus also in a laboratory speeding through space,
Just as it would in ‘still ether’. It is not for us to ask how!

In the Lorentz theory the null result of the Michelson—Morley experiment
was explained by the contraction of the arm that moves longitudinally
through the ether, so that the actual lengths of the arms are related by
L, = Ly(1 — v*/c?)"/%, which yields the observed equality 7, = 7,. (It can
be shown that the contraction hypothesis ensures 7, = T, for all positions
of the arms.) That there is also need of a second hypothesis—time dilation—
in the Lorentz theory can be appreciated by considering a simple thought
experiment. Suppose we could measure the original to-and-fro time 7,
directly with a clock, and suppose we could then move the arm L, along
with the ether so that v becomes zero. Then the to-and-fro time should be
Ty = 2L,/c = T,(1 — v*/c*)"/2. But if nature’s conspiracy to hide the ether
is complete, we would instead measure T, = T,. This could be accounted for
by the hypothesis that a clock moving with speed v through the ether goes
slow by a factor (1 — v?/c?)"/2. For then the measured time in the original
position is less by that factor than the actual time 75, and is thus equal to T,

A recent laser version' of the Michelson-Morley experiment has demon-
strated the isotropy of the to-and-fro speed of light to an accuracy of ~ 10715,
And, as has been stressed by Sexl, modern equivalents of the Michelson-
Morley experiment are being performed daily. For example, the synchrony
of the various atomic clocks around the earth that serve to define ‘Inter-
national Atomic Time’ is continually being tested by an exchange of radio
signals. Any interference with these signals by a variable ether wind of the
expected magnitude could be detected by the clocks. Needless to say, none
has been detected: day or night, summer or winter, the signals from one
clock to another always arrive with the same time delay. Again, the incredible
accuracy of some modern radio navigational systems hinges crucially on the
independence of the speed of radio signals of any ether wind.

3. Inertial frames in special relativity

A frame of reference is a conventional standard of rest relative to which
measurements can be made and experiments described. For example, if we
choose a frame rigidly attached to the earth, the various points of the earth
remain at rest in this frame while the ‘fixed’ stars all trace out vast circles
in the course of each day; if, on the other hand, we choose a rigid frame
attached to the fixed stars then these remain at rest while points on the earth,
other than those on its axis, trace out approximate circles in the course of
each day. and the earth itself traces out an ellipse in the course of each year;
and so on. Among all possible reference frames there is one class which

' Brilie.. . and Hall, J. L. (1979) Phys. Rev. Letters 42, 549.
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plays a special role in classical mechanics, namely the class of inertial frames.
These frames play an even more fundamental role in the special theory of
relativity and we shall therefore define and discuss them carefully:

An inertial frame is one in which spatial relations, as determined by rigid scales
at rest in the frame, are Euclidean and in which there exists a universal time
in terms of which free particles remain at rest or continue to move with
constant speed along straight lines (i.e. in terms of which free particles obey
Newton’s first law).

Free particles placed without velocity at fixed points in an inertial frame
will remain at those points, by definition. We can therefore picture an inertial
frame as an aggregate of actual or virtual free test-particles mutually at rest,
as determined by rigid scales. The distances between these ‘defining’ particles
satisfy the Euclidean axioms—an important stipulation in view of later
developments. Straight lines in such a frame can be defined as geodesics
(lines of minimum length) and free particles not belonging to the defining
aggregate move along such lines. We can further picture the defining particles
as carrying clocks that indicate the universal time throughout the frame.

We shall consider two inertial frames equal if they have the same defining
particles. The choice of coordinates within such a frame is still free; once it
is made, one should logically use a different term for the frame-plus-its-
coordinates, such as inertial (coordinate-) system. In practice, however, we
shall usually be less precise and let the context define which of the above we
mean by ‘inertial frame’.

Now let us see the relevance of all this to special relativity. We shall adopt
the modern view (largely due to Einstein) that a physical theory is an abstract
mathematica! model (much like Euclidean geometry) whose applications to
the real world consist of correspondences between a subset of it and a subset
of the real world. In line with this view, special relativity is the theory of an
ideal physics referred to an ideal set of infinitely extended gravity-free inerrial
Sframes, such as we described above.! Why ‘gravity-free’? Classically, gravity
was regarded as an overlay which did not affect the rest of physics. So it
was logical for Newton to treat the frame of the fixed stars as inertial, in the
sense that but for. gravity free particles would move uniformly relative to it.
But Einstein, in his general relativity (the details of which are beyond the
scope of this book) taught us-that gravity is curvature (of space and time)
and so affects all the rest of physics, which has no choice but to play on a
stage of space and time. Particles not subject to forces except gravity move

! On a more sophisticated level, the arena of special relativity will eventually (in Chapter 1V)
be seen to be Minkowski's four-dimensional *spacetime’. This is an abstraction from the set of
all inertial frames. At first, however, we shall rely on the set of inertial frames itself to formulate
the theory.
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‘as straight as possible’ in curved ‘spacetime’. In E. T. Whittaker’s phrase,
gravity ceased to be one of the players and became part of the stage. Thus,
extended inertial frames cannot be realized in nature, because gravity
destroys Euclidicity. But this does not affect in any way the logic of special
relativity as an abstract theory (just as it does not invalidate Euclidean
geometry). It does, however, put limitations on its correspondence with the
real world. These are spelled out by Einstein’s equivalence principle of 1907
(on which he eventually based his general theory of relativity): the reference
frames in the real world that correspond to (portion of ) the ideal inertial frames
discussed in special relativity are the freely falling nonrotating local frames. At

7, any given place and time in the real world there is a family of such frames,

each member of which can be realized by an aggregate of test-particles
momentarily at rest relative to each other and falling freely under gravity.
Certainly in Newton’s theory such a local frame is equivalent to an inertial
frame from which gravity has been eliminated, for in a gravitational field all
particles suffer the same acceleration. Most of us have at least vicariously
experienced such freely falling local frames: we need only recall the televized
pictures of space capsules in which astronauts are weightless and, if
unrestrained, move according to Newton’s first law. Such capsules, evidently
of limited extent, are the primary reference frames in the real world relative
to which the laws of special-relativistic physics would be expected to apply
most accurately.!

In this book all reference frames used (unless otherwise stated) will be
ideal infinitely extended gravity-free inertial [rames, and all observers will be
considered to use such frames (‘inertial observers’). Sometimes the term
‘inertial’ may be omitted, but it will always be understood.

It will turn out that, just as in Newtonian mechanics, the 1deal inertial
frames of special relativity are all in uniform translatory motion relative to
each other, and, conversely, that any frame having such motion relative to
an inertial frame is itself inertial.

[t will also turn out, as a direct consequence of the relativity principle,
that all inertial frames are spatially homogeneous and isotropic, not only in
their assumed Euclidean geometry but for the performance of all physical
experiments. By this we mean that the outcome of an experiment is the same
whenever its initial conditions differ only by a translation (homogeneity) and
rotation (isotropy) in some inertial frame.

It may be noted that, whereas our definition of inertial frame already
determines the rate of time in each inertial frame, up to an overall constant
factor, as that in which free particles move uniformly, isotropy determines

' There is a close analogy between plane Euclidean geometry and its applications to ‘small’
portions of curved surfaces (like the surface of the earth), on the one hand, and special relativity
and its applications to ‘small’ portions of the real world curved by gravity, on the other hand.
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the clock zero-point settings up to an overall additive constant. For suppose
isotropy holds in an inertial frame referred to Cartesian coordinates x, y, z
and we define a new time t' =t + kx (k = constant > 0). Then Newton’s
first law will still hold. But any given rifle will now shoot bullets faster in
the negative x-direction than in the positive x-direction (i.e. wnh grealer
coordinate velocity). :

Again, as a consequence of the relativity principle, it will presently turn
out that inertial frames are temporally homogeneous, i.e. that identical
experiments (relative to a given inertial frame) performed at different times
yield identical results. In particular, this implies that all methods of time
keeping based on repetitive processes are equivalent, and it denies such
possibilities (envisaged by E. A. Miine) as that inertial time—relative to
which free particles move uniformly—falls out of step over the centuries with
atomic time, e.g. that indicated by a caesium clock.

4. Einsteins two axioms for special relativity

As we have seen, Einstein’s reaction to the failure of all attempts to detect
the ether frame was rddical. He advanced as an axiom the following principle
of relativity:

The laws of physics are identical in all inertial frames, or, equivalently, the
outcome of any physical experiment is the same when performed with identical
initial conditions relative to any inertial frame.

Strictly speaking we should read ‘inertial coordinate system’ for ‘inertial
frame’ in the above statement. Since orthogonal axes can be set up with
origin at any point, and with axes in any direction, and since the zero point
of time can be chosen arbitrarily, the relativity principle as applied to various
coordinate systems within a single inertial frame immediately leads to the
spatial homogeneity and isotropy and to the temporal homogeneity of each
inertial frame, for the performance of any physical experiment.

.- Note that Einstein’s principle is a generalization to the whole of physics
of a relativity principle long known to be satisfied by Newtonian mechanics.
Such a generalization is strongly supported by the essential unity of physics.
For it would be very disturbing if, for example, the electromagnetic laws
governing the behaviour of matter on the atomic scale did not share in this
very profound and remarkable invariance property of the laws of mechanics;
which govern the behaviour of matter on the macroscopic scale. And, indeed,
Einstein cited instances of manifest relativity from electromagnetism. For
example, the current induced in a conductor by a magnet isthe same whether
the conductor is at rest and the magnet moVving, or vice versa. But, of course.
the chief recommendation for this as for any other axiom is the success
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of the theory resulting from it.

The acceptance of the relativity principle—Einstein’s first axiom—seems
harmless enough until we come to his second axiom: There exists an inertial
frame in which light signals in vacuum always travel rectilinearly at constant
speed c, in all directions, independently of the motion of the source. (The value
of ci52.9979245... x 108 ms™ !, butc =3 x 10°ms™! is good enough for
many applications.)

By itself, this axiom is also perfectly reasonable. Even Einstein’s contem-
poraries, familiar with Maxwell’s electromagnetic theory of light, did not
expect the speed of light to depend on the speed of the source, and they had
empirical evidence for this axiom in their pseudo-inertial terrestrial frame of
reference. In particular, the direction-independence had been very accurately
tested by the Michelson—Morley experiment. But when combined with the
first axiom, the second leads to the following apparently absurd state of
affairs, which we shall call Einstein’s law of light propagation:

Light signals in vacuum are propagated rectilinearly, with the same speed c,
at all times, in all directions, in-all inertial frames.

Thus if a light signal recedes from me and I transfer myself to ever
faster-moving inertial frames in pursuit of it, I shall not alter the velocity of
that light signal relative to me by one iota. This is totally irreconcilable with
our classical concepts of space and time. But it was a mark of Einstein’s
genius to realize that those concepts were dispensable, and could be replaced
by others. The final form of those others is due to the mathematician
Minkowski, and consists in a certain blend of space and time into a
four-dimensional ‘spacetime’ (1908), as we shall see in due course.

A first logical consequence of Einstein’s two axioms was the elimination
of the ether concept from physics. Each inertial frame now has the properties
with which the ether frame had been credited, and so it makes no sense to
single out one inertial frame arbitrarily and call it the ether frame. It is true
that Lorentz’s theory—gentler to the classical prejudices than Einstein’s, and
observationally equivalent to it—kept the ether idea alive a few years longer.
But soon Einstein’s far more elegant and powerful ideas prevailed, and
Lorentz’s theory, together with the ether concept, fell into oblivion.

Finally, in spite of its historical and practical importance, we must
de-emphasize the logical role of the law of light propagation as a pillar of
special relativity. As we shall see in Section 7(x), a second axiom is needed
only to determine the value of an invariant velocity ¢ that occurs naturally
in the theory. But this could come from any number of branches of
physics—we need only think of the energy formula E = mc?, or de Broglie’s
velocity relation uv = c%. Special relativity would exist even if light and
electromagnetism were somehow eliminated from nature. It is primarily a
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new theory of space and time, and only secondarily a theory of the physics
in that new space and time, with no preferred relation to any one branch.

5. Coordinates. The relativity of time

An event is an instantaneous point-occurrence, like the collision of two
particles or the flash of a flash bulb. It will therefore be specified by four
coordinates, one of time and three of position, e.g. (t, x, y, z). In special
relativity events play a central role and we must be clear how to assign
coordinates to them, at least conceptually.

The standard spatial coordinates for inertial frames are orthonormal
Cartesian coordinates x, y,z. To assign these to events, the ‘presiding’
observer at the origin of an inertial frame needs to be equipped only with a
standard clock (e.g. one based on the vibrations of the caesium atom), a
theodolite, and a means of emitting and receiving light signals. He will also
need an agreed standard of length, e.g. a metre stick or the wavelength of a
specified atomic emission line, at least in order to assign a numerical value
to the speed of light once and for all. In accordance with the law of light
propagation, he can then measure the distance of any particle (at which an
event may be occurring) by the radar method of bouncing at light-echo off
that particle and multiplying the elapsed time by 3c. Angle measurements
with the theodolite on the returning light signal will serve to determine the
relevant (x, y, z) once a set of coordinate directions has been chosen. The
same signal can be used to determine the time ¢ of the reflection event at the
particle as the average of the time of emission and the time of reception.

But conceptually it is preferable to precoordinatize the frame and to read
off the coordinates of all events locally. For this purpose we imagine standard
clocks placed at rest at the vertices (me, ne, pe) of an arbitrarily fine lattice,
where m, n, p run over the integers and ¢ is arbitrarily small. The spatial
coordinates of these clocks can be determined once and for all by the
origin-observer and then engraveéd upon them. To synchronize the clocks it
is sufficient to emit a single light signal from the origin, say at time ¢,: each
lattice clock is set to read t, + r/c as the signal passes it, where r is its distance
from the origin. An event is then coordinatized by noting the time and space
coordinates (i, x, y, z) on the clock nearest to it.

In view of our remarks at the end of the last section about the
dispensability of the law of light propagation as an axiom, it will be well to
point out that identical coordinates can be assigned without the use of light
signals—though perhaps less conveniently. For example, the basic lattice
could be laid out with rigid scales of equal length ¢. And the vertex clocks
could be synchronized by a sound signal from the origin if the frame were
filled with still air, or by rifle bullets of known velocity shot from the origin
in all directions at tinie t,. It is clear that if there exists a time in terms of



