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The topology of the configuration space for many classical systems of
physical importance, such as the free particle.and the harmonic oscillator in
RY, happens to be very simple. The conventional exposition of classical and
quantum mechanics generally concentrates on such systems, explains their
quantization and goes on to show that there is a representation of wave func-
tions as functions on the configuration space Q. However, already in 1931,
Dirac understood in his work on magnetic monopoles that there are problems
of interest where it is not natural to regard wave functions as functions on p
Subsequent developments, especially in recent years, have made it clear that
there are numerous important physical theories, all distinguished by a nontriv-
1al topology of @, where too it is not appropriate to regard wave functions as
functions on Q. Rather they are to be thought of as special kinds of functions
on a principal fibre bundle over Q or as sections of an associated vector bundle.

The nature of wave fuffttions is only one aspect of the properties of a
physical system subject to the influence of the configuration space topology.
It is now appreciated that there are several other attributes which may show .
the effects of this topology. In particular, for appropriate topblogies of @,
already the classical theory can predict the existence of novel sorts of stable
configurations, such as line and point defects in condensed matter systems,
solitons and monopoles. It happens that the nature of wave functions of the
quantal version of many of these configurations is in turn influenced by the
topology of Q. The latter can thus influence quantum dynamics both by
leading to the existence of new states such as those describing solitons and by

affecting their qualitative properties.
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This book is an introduction to the role of topology in the quantization of
classical systems. It is also an introduction to topological solitons with special
emphasis on Skyrmions. As regards the first aspect, several issues of current
interest are dealt with at a reasonably elementary level. Examples of such top-
ics we cover are principal fibre bundles and their role in quantum physics, the
possibility of spinorial quantum states in a Lagrangian theory based on ten-
sorial variables, and multiply connected configuration spaces and associated
quantum phenomena like the QCD 6 angle and exotic statistics. The ideas are
also illustrated by simple examples such as the spinning particle, the charge-
monopole system and strings in 3 + 1 dimensions. The application of these
ideas to quantum gravity is another subject treated at an introductory level.
In the field of topological solitons, our main interest has been in the exposition
of Skyrmion physics. For this reason, we have limited ourselves to a compara-
tively brief treatment of the general theory of solitons, adequate to follow the
subsequent chapters on Skyrmion physics. Some Skyrmion phenomenology is
also discussed although it is far from being exhaustive. A chapter on elec-
troweak Skyrmions has also been included. Although these are not topological
solitons, they do resemble Skyrmions in many ways so that such a chapter
seemed appropriate. There is also another class of solitons called topological
geons to which this book may serve as an introduction. They were discovered
by Friedman and Sorkin and possess many remarkable properties because of

the rich topological complexities to be found in gravitational models.

An attempt has been made in this book to introduce the reader to the
significance of topology for many distinct physical systems such as spinning
narticles, the charge-monopole system, strings, Skyrmions, QCD and gravity.
It is our hope that it will contribute to a wider appreciation of the profouna

role of topology in classical and quantum dynamics.

There are several important aspects of the role of topology in quantization
and soliton physics that we have not dealt with in this book. A major omission
has been the subject of anomalies. As indicated in the text, this is a topic which

can be naturally approached using the concepts that we develop. Limitations
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on our time have forced us into this omission and we are obliged to refer the
interested reader to the several excellent reviews which exist today. Another
interesting aspect of quantization which we shall not discuss is the relation
hetween our approach to quantization with its emphasis on topology and the
one which concentrates instead on domain and extension problems of operators.
As alluded to previously, our treatment of general soliton theory and Skyrmion
phenomenology has also been rather brief. In Skyrmion physics, there exists
in particular a substantial body of research which considers the applications of
Skyrme’s model and its variants to low energy physics and which we have not
attempted to cover adequately because of our limitations. Fortunately detailed
reviews of these developments are also available to which the interested reader

can refer.

With regard to references, no attempt has been made to give an exhaus-
tive bibliography. We shall list essentially only those publications which we
have frequently used during the preparation of this book. We shall also list a
few representative review articles which cover material not treated by us here.
We apologize to those authors whose work we have overlooked and to those

who feel that their work should have been referred to.

The book is an outgrowth of lectures given by the authors at various
institutions and conferences. We thank the audience at these lectures as well
as our collegues at Syracuse and elsewhere for their suggestions and criticism.
We are especially grateful to Rafael Sorkin for numerous discussions about the
material treated in this book and for collaboration on its title. We thank Ted
Allen for carefully proofreading the manuscript and several useful suggestions,
and David Dallman and Kumar Gupta for their generous help in collecting
references. The typing of the several versions of the manuscript of this book
was done by Jane Boyd at Tuscaloosa, by Guido Celentano at Naples and by
Annika Hofling at Goteborg. We also gratefully record our appreciation of
their patience and accurate work here. Finally, the TH-division at CERN is
acknowledged for hospitality while this book was completed.
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Chapter 1

INTRODUCTION

The dynamics of a system in classical mechanics can be described by
equations of motion on a configuration space Q). These equations are generally
of second order in time. Thus if the position ¢(¢y) of the system in @ and
its velocity ¢(to) are known at some time to, then the equations of motion

uniquely determine the trajectory ¢(t) for all time ¢.

When the classical system is quantized, the state of a system at time %,
is not specified by a position in @ and a velocity. Rather, it is described by
a wave fungction ¥ which in elementary quantum mechanics is a (normalized)
function on @. The correspondence between the quantum states and wave
functions however is not one to one since two wave functions which differ by
a phase describe the same state. The quantum state of a system is thus an
equivalence class {e®i|a real} of normalized wave functions. The physical
reason for this circumstance is that experimental observables correspond to

functions like ¥*1 which are insensitive to this phase.

In discussing the transformation properties of wave functions, it is of-
ten convenient to enlarge the domain of definition of wave ‘unctions in ele-
mentary quantum mechanics in such a way as to naturally describe all the
wave functions of an equivalence class. Thus instead of considering wave func-
tions as functions on @, we can regard them as functions on a larger space
Q=Qx8" = {(g,€*)}. The space Q is obtained by associating circles S?
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to each point of () and is said to be a U(1) bundle on Q. Wave functions on
Q are not completely general functions on Q, rather they are functions with
the property ¥(g.¢'@*®)) = 3(q,e'*)e*®. [Here we can also replace €'’ by e’
where n is a fixed integer]. Because of this property, experimental observables
like *¢ are independent of the extra phase and are functions on @ as they
should be. The standard elementary treatment which deals with functions on
Q is recovered by restricting the wave functions to a surface {(g,e'*)|q € Q}
in () where g has a fixed value. Such a choice ag of a corresponds to a phase

convention in the elementary approach.

When the topology of @ is nontrivial, it is often possible to associate
circles 81 to each point of @ so that the resultant space Q = {¢} is not Q x S"
although there is still an action of U(1) on Q. We shall indicate this action

(4

})_\' ci — (}6' . 1o 10

It is the analogue of the transformation (q,e'®) — (q,e'®e*) we
considered carlier. We shall require this action to be free, which means that
G = ¢ if and only if € is the identity of U(1). When Q # Q x S, the
/(1) bundle Q over Q is said to be twisted. It is possible to contemplate wave
functions which are functions on Q even when this bundle is twisted provided
they satisfy the constraint ¥:(ge*’) = 3(§)e™? for some fixed integer n. If this
constraint 1s satisfied, experimental observables being invariant under the {/(1)
action are functions on @) as we require. However, when the bundle is twisted,
it does not admit globally valid coordinates of the form (g, €e*®) so that it is
not possible (modulo certain technical qualifications) to make a global phase
choice, as we did ealier. In other words, it is not possible to regard wave

functions as functions on @) when @ is twisted.

The classical Lagrangian L often contains complete information on the
nature of the bundle Q. We can regard the classical Lagrangian as a function
on the tangent bundle TQ of Q The space TQ is the space of positions in Q
and the associated velocities. When Q is trivial, it is possible to reduce any
such Lagrangian to a Lagrangian on the space TQ of positions and velocities
associated with () thereby obtaining the familiar description. On the other

hand, when Q is twisted, such a reduction is in general impossible. Since the
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lequations of motion deal with trajectories on @ and not on Q, it is neces-
sary that there is some principle which renders the additional U(1) degrees
of freedom in such a Lagrangian nondynamical. This principle is the prin-
ciple of gauge invariance for the gauged group U(1). Thus under the gauge
transformation §(t) — §(t)e®®®), these Lagrangians change by constant times
do/dt, where t is the time. Since the equations of motion therefore involve only
gauge invariant quantities which can be regarded as functions of positions and
velocities associated with Q, these equations describe dynamics on Q. The
Lagrangians we deal with in this book split into two terms Lo and Lz, where
Lo is gauge invariant while Ly z changes as indicated above. This term Lwz
has a geometrical interpretation. It is the one which is associated with the

nature of the bundle Q

In particle physics, such a topological term was first discovered by Wess
and Zumino [1] in their investigation of nonabelian anomalies in gauge theories.
The importance and remarkable properties of such “Wess-Zumino terms” have
been fo.rcefully brought to the attention of particle physicists in recent years
because of the realization that they play a critical role in creating fermionic
states in a theory with bosonic fields and in determining the anomaly structure

of effective field theories.

In point particle mechanics, the existence and significance of Wess-Zumino
terms have long been understood. For example, such terms play an essential
role in the program of geomet;ric quantization (2] and related investigations
which study the Hamiltonian or Lagrangian description of particles of fixed
spin [3-18]. A similar term occurs in the description of the charge-monopole
system [19-24] and has also been discussed in the literature. Recently such

terms have been found in dual string models as well [25,26].

The Wess-Zumino term affects the equations of motion and has significant
dynamical consequences already at the classical level. Its impact however is
most dramatic in quantum theory where as was indicated above it affects the
structure of the state space. For example, in the SU(3) chiral model it is this

term which is responsible for the fermionic nature of the Skyrmion [27].



