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BASIC CONCEPTS

It is engineering that changes the world.

—Isaac Asimov

Alessandro Antonio Volta (1745-1827), an Italian physicist, invented the electric
battery—which provided the first continuous flow of electricity—and the capacitor.

Born into a noble family in Como, Italy, Volta was performing electrical
experiments at age 18. His invention of the battery in 1796 revolutionized the use of
electricity. The publication of his work in 1800 marked the beginning of electric circuit
theory. Volta received many honors during his lifetime. The unit of voltage or potential
difference, the volt, was named in his honor.

Andre-Marie Ampere (1775-1836), a French mathematician and physicist, laid the
foundation of electrodynamics. He defined the electric current and developed a way to
measure it in the 1820s.

Born in Lyons, France, Ampere at age 12 mastered Latin in a few weeks, as he
was intensely interested in mathematics and many of the best mathematical works were
in Latin. He was a brilliant scientist and a prolific writer. He formulated the laws of
electromagnetics. He invented the electromagnet and the ammeter. The unit of electric

current, the ampere, was named after him.

Historical Profils T W




Figure 1.1

Current

A simple electric circuit.

PART | DC Circuits

I.I INTRODUCTION

Electric circuit theory and electromagnetic theory are the two fundamen-
tal theories upon which all branches of electrical engineering are built.
Many branches of electrical engineering, such as power, electric ma-
chines, control, electronics, communications, and instrumentation, are
based on electric circuit theory. Therefore, the basic electric circuit the-
ory course is the most important course for an electrical engineering
student, and always an excellent starting point for a beginning student
in electrical engineering education. Circuit theory is also valuable to
students specializing in other branches of the physical sciences because
circuits are a good model for the study of energy systems in general, and
because of the applied mathematics, physics, and topology involved.

In electrical engineering, we are often interested in communicating
or transferring energy from one point to another. To do this requires an
interconnection of electrical devices. Such interconnection is referred to
as an electric circuit, and each component of the circuit is known as an
element.

o :

; An electric circuit is an interconnection of electrical elements.

s

A simple electric circuit is shown in Fig. 1.1. It consists of three
basic components: a battery, alamp, and connecting wires. Such a simple
circuit can exist by itself: it has several applications, such as a torch light,
a search light, and so forth.

A complicated real circuit is displayed in Fig. 1.2, representing the
schematic diagram for a radio receiver. Although it seems complicated,
this circuit can be analyzed using the techniques we cover in this book.
Our goal in this text is to learn various analytical techniques and computer
software applications for describing the behavior of a circuit like this.

Electric circuits are used in numerous electrical systems to accom-
plish different tasks. Our objective in this book is not the study of various
uses and applications of circuits. Rather our major concern is the anal-
ysis of the circuits. By the analysis of a circuit, we mean a study of the
behavior of the circuit: How does it respond to a given input? How do
the interconnected elements and devices in the circuit interact?

We commence our study by defining some basic concepts. These
concepts include charge, current, voltage, circuit elements, power, and
energy. Before defining these concepts, we must first establish a system
of units that we will use throughout the text.

[.2 SYSTEMS OF UNITS

As electrical engineers, we deal with measurable quantities. Our mea-
surement, however, must be communicated in a standard language that
virtually all professionals can understand, irrespective of the country
where the measurement is conducted. Such an international measure-
ment language is the International System of Units (SI), adopted by the
General Conference on Weights and Measures in 1960. In this system,
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Figure |2 Electric circuit of a radio receiver.

(Reproduced with permission from QST, August 1995, p. 23.)

there are six principal units from which the units of all other physical
quantities can be derived. Table 1.1 shows the six units, their symbols,
and the physical quantities they represent. The SI units are used through-

out this text. TABLE 12 The SI prefixes.
One great advantage of the SI unit is that it uses prefixes based on
the power of 10 to relate larger and smaller units to the basic unit. Table Multiplier  Prefix  Symbol
1.2 shows the SI prefixes and their symbols. For example, the following 1018 exa E
are expressions of the same distance in meters (m): 10" peta P
600,000,000mm  600,000m 600 km 10* tera T
10° giga G
10 mega M
10} kilo k
. . ; 10 hecto h
TABLE I.I  The six basic SI units. hes ek 3
Quantity Basic unit ~ Symbol 10! deci d
1072 centi c
Length meter m 1073 milli m
Mass kilogram kg 106 micro n
Time second s 107° nano n
Electric current ampere A 1012 pico p
Thermodynamic temperature  kelvin K 1071 femto f
Luminous intensity candela cd 108 atto a




Figure I3 Electric current due to flow
of electronic charge in a conductor.

A convention is a standard way of describing
something so that others in the profession can
understand what we mean. We will be using IEEE
conventions throughout this book.

PART | DC Circuits

.3 CHARGE AND CURRENT

The concept of electric charge is the underlying principle for explaining
all electrical phenomena. Also, the most basic quantity in an electric
circuit is the electric charge. We all experience the effect of electric
charge when we try to remove our wool sweater and have it stick to our
body or walk across a carpet and receive a shock.

Charge is an electrical property of the atomic particles of which
matter consists, measured in coulombs (C).

We know from elementary physics that all matter is made of fundamental

building blocks known as atoms and that each atom consists of electrons,

protons, and neutrons. We also know that the charge ¢ on an electron is

negative and equal in magnitude to 1.602 x 10~'° C, while a proton carries

a positive charge of the same magnitude as the electron. The presence of

equal numbers of protons and electrons leaves an atom neutrally charged.
The following points should be noted about electric charge:

1. The coulomb is a large unit for charges. In 1 C of charge, there
are 1/(1.602 x 1071 = 6.24 x 10'® electrons. Thus realistic
or laboratory values of charges are on the order of pC, nC, or
ucC.!

2. According to experimental observations, the only charges that

occur in nature are integral multiples of the electronic charge
e=—1.602x 107" C.

3. The law of conservation of charge states that charge can neither
be created nor destroyed, only transferred. Thus the algebraic
sum of the electric charges in a system does not change.

We now consider the flow of electric charges. A unique feature of
electric charge or electricity is the fact that it is mobile; that is, it can
be transferred from one place to another, where it can be converted to
another form of energy.

When a conducting wire (consisting of several atoms) is connected
to a battery (a source of electromotive force), the charges are compelled
to move; positive charges move in one direction while negative charges
move in the opposite direction. This motion of charges creates electric
current. It is conventional to take the current flow as the movement of
positive charges, that is, opposite to the flow of negative charges, as Fig.
1.3 illustrates. This convention was introduced by Benjamin Franklin
(1706—-1790), the American scientist and inventor. Although we now
know that current in metallic conductors is due to negatively charged
electrons, we will follow the universally accepted convention that current
is the net flow of positive charges. Thus,

"However, a large power supply capacitor can store up to 0.5 C of charge.
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Electric current is the time rate of change of charge, measured in amperes (A).

Mathematically, the relationship between current i, charge g. and time ¢
is

. _dq

i = (1.1
dt

where current is measured in amperes (A), and
1 ampere = 1 coulomb/second

The charge transferred between time #y and ¢ is obtained by integrating
both sides of Eq. (1.1). We obtain

1
q:/ idt (1.2)
o

The way we define current as i in Eq. (1.1) suggests that current need not
be a constant-valued function. As many of the examples and problems in
this chapter and subsequent chapters suggest, there can be several types
of current; that is, charge can vary with time in several ways that may be
represented by different kinds of mathematical functions.

If the current does not change with time, but remains constant, we
call it a direct current (dc).

l A direct current (dc) is a current that remains constant with time.

By convention the symbol / is used to represent such a constant current.

A time-varying current is represented by the symbol i. A com-
mon form of time-varying current is the sinusoidal current or alternating
current (ac).

E An alternating current (ac) is a current that varies sinusoidally with time.

Such current is used in your household, to run the air conditioner, refrig-
erator, washing machine, and other electric appliances. Figure 1.4 shows
direct current and alternating current; these are the two most common
types of current. We will consider other types later in the book.

Once we define current as the movement of charge, we expect cur-
rent to have an associated direction of flow. As mentioned earlier, the
direction of current flow is conventionally taken as the direction of positive
charge movement. Based on this convention, a current of 5 A may be
represented positively or negatively as shown in Fig. 1.5. In other words,
a negative current of —5 A flowing in one direction as shown in Fig.
1.5(b) is the same as a current of +5 A flowing in the opposite direction.

I A

(a)

(b)

Figure |4 Two common types of
current: (a) direct current (dc),
(b) alternating current (ac).

sa /! A/

(a) (b)

Figure |.5  Conventional current flow:
(a) positive current flow, (b) negative current
flow.
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£ x AP L I

PRACTICE PROBLEMNEN

How much charge is represented by 4,600 electrons?
Solution:
Each electron has —1.602 x 10" C. Hence 4,600 electrons will have

—1.602 x 107" Clelectron x 4,600 electrons = —7.369 x 107'° C

Calculate the amount of charge represented by two million protons.
Answer: +3.204 x 107"% C.

EYXEN

PRACTICE PROBLEMEE

The total charge entering a terminal is given by ¢ = 5t sin4mt mC. Cal-
culate the current at + = 0.5 s.

Solution:
. dg d . .
f= I = W(S’ sindmt) mC/s = (Ssindmt + 207wt cos4mt) mA
dt C
Att =0.5,

i =5sin2m 4+ 107 cos2r =0+ 107 = 31.42 mA

If in Example 1.2, ¢ = (10 — 10e~%) mC, find the currentat 1 = 0.5 s.
Answer: 7.36 mA.

M|.3

PRACTICE PROBLEMEEE

Determine the total charge entering a terminal betweent = I sandt = 2s
if the current passing the terminal is i = (317 — 1) A.

Solution:

5

q:/_ i(ir:/_(3t3—t)zlr

=1 |

1—8 no(1-1)=ss
= ~_)—<1~E =55C

Il
N
=
|
| T

The current flowing through an element is
) 2A, 0<t <1
=
212 A, t>1

Calculate the charge entering the element from?z =0tor =2 s.
Answer: 6.667 C.
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|.4 VOLTAGE

As explained briefly in the previous section, to move the electron in a
conductor in a particular direction requires some work or energy transfer.
This work is performed by an external electromotive force (emf), typically
represented by the battery in Fig. 1.3. This emf is also known as voltage
or potential difference. The voltage v,, between two points a and b in
an electric circuit is the energy (or work) needed to move a unit charge
from a to b; mathematically,

. : 1.3)

Vab = d([ (1.3

where w is energy in joules (J) and ¢ is charge in coulombs (C). The
voltage v, or simply v is measured in volts (V), named in honor of the
Italian physicist Alessandro Antonio Volta (1745-1827), who invented
the first voltaic battery. From Eq. (1.3), it is evident that

1 volt = 1 joule/coulomb = 1 newton meter/coulomb

Thus,

o
[ Voltage (or potential difference) is the energy required to move
) a unit charge through an element, measured in volts (V).

L.

Figure 1.6 shows the voltage across an element (represented by a
rectangular block) connected to points ¢ and b. The plus (+) and minus
(—) signs are used to define reference direction or voltage polarity. The
v, can be interpreted in two ways: (1) point a is at a potential of v,
volts higher than point b, or (2) the potential at point a with respect to
point b is v,. It follows logically that in general

Vab = —Upq (1.4)

For example, in Fig. 1.7, we have two representations of the same vol-
tage. InFig. 1.7(a), pointa is +9 V above point b; in Fig. 1.7(b), point b is
—9V above pointa. We may say that in Fig. 1.7(a), there is a 9-V voltage
drop from a to b or equivalently a 9-V voltage rise from b to a. In other
words, a voltage drop from a to b is equivalent to a voltage rise from
btoa.

Current and voltage are the two basic variables in electric circuits.
.The common term signal is used for an electric quantity such as a current
or a voltage (or even electromagnetic wave) when it is used for conveying
information. Engineers prefer to call such variables signals rather than
mathematical functions of time because of their importance in commu-
nications and other disciplines. Like electric current, a constant voltage
is called a dc voltage and is represented by V, whereas a sinusoidally
time-varying voltage is called an ac voltage and is represented by v. A
dc voltage is commonly produced by a battery; ac voltage is produced by
an electric generator.

Figure |6 Polarity
of voltage v,.

(a) (b)

Figure I.7  Two equivalent
representations of the same
voltage vyp: (a) point a is 9 V
above point b, (b) point b is
—9 V above point a.

Keep in mind that electric current is always
through an element and that electric voltage is al-
ways across the element or between two points.



p=+vi p=-v

(a) (b)

Figure |8  Reference
polarities for power using
the passive sign conven-
tion: (a) absorbing power,
(b) supplying power.
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|.5 POWER AND ENERGY

Although current and voltage are the two basic variables in an electric
circuit, they are not sufficient by themselves. For practical purposes,
we need to know how much power an electric device can handle. We
all know from experience that a 100-watt bulb gives more light than a
60-watt bulb. We also know that when we pay our bills to the electric
utility companies, we are paying for the electric energy consumed over a
certain period of time. Thus power and energy calculations are important
in circuit analysis.

To relate power and energy to voltage and current, we recall from
physics that:
&

Power is the time rate of expending or absorbing energy, measured in watts (W).

SO

We write this relationship as

'{ (1.5)

;ﬁ
where p is power in watts (W), w is energy in joules (J), and ¢ is time in
seconds (s). From Eqgs. (1.1), (1.3), and (1.5), it follows that

dw dw dq .
= = (1.6)
dr dq dr
or
= Ui (1-7)

The power p in Eq. (1.7) is a time-varying quantity and is called the
instantaneous power. Thus, the power absorbed or supplied by an element
is the product of the voltage across the element and the current through
it. If the power has a + sign, power is being delivered to or absorbed
by the element. If, on the other hand, the power has a — sign, power is
being supplied by the element. But how do we know when the power has
a negative or a positive sign?

Current direction and voltage polarity play a major role in deter-
mining the sign of power. It is therefore important that we pay attention
to the relationship between current i and voltage v in Fig. 1.8(a). The vol-
tage polarity and current direction must conform with those shown in Fig.
1.8(a) in order for the power to have a positive sign. This is known as
the passive sign convention. By the passive sign convention, current en-
ters through the positive polarity of the voltage. In this case, p = +vi or
vi > 0implies that the element is absorbing power. However, if p = —vi
orvi < 0, as in Fig. 1.8(b), the element is releasing or supplying power.

r Passive sign convention is satisfied when the current enters through
, the positive terminal of an element and p = ++i. If the current
L enters through the negative terminal, p = —vi.




