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Preface

This book consists of select works of the author, which include most important
results about complex analytic theory, methods and applications obtained by the
author in recent 25 years, mainly properties of solutions and various boundary
value problems for nonlinear elliptic equations and systems, parabolic equations
and systems, hyperbolic and mixed complex equations with parabolic degeneracy.
In other words, a large portion of the works is devoted to boundary value problems
for general elliptic complex equations of first and second order, initial-boundary
value problems for nonlinear parabolic complex equations and systems of second
order including some equations and systems in higher dimensional domains, and
properties of solutions for hyperbolic complex equations of second order. Moreover,
some results about second order complex equations of mixed (elliptic-hyperbolic)
type are introduced. Applications of nonlinear complex analysis to continuum
mechanics, and approximate methods of elliptic complex equations are also inves-
tigated.

In Chapter 1, we introduce the foundational theorems of nonlinear quasicon-
formal mappings, mainly the existence and uniqueness of solutions for some non-
linear elliptic complex equations from the N + 1-connected domain onto an N + 1-
connected circular domain are proved by using a new method. In addition, we
consider general quasiconformal shift theorems in some multiply connected do-

mains.

In Chapter 2, we first discuss the Riemann-Hilbert problem for general nonlin-
ear elliptic complex equations of first order with non-smooth boundary. Afterwards
the solvability of the oblique derivative probleins for nonlinear uniformly elliptic
systems of second order equations in multiply connected domains is discussed. For
this sake, we propose a modified Riemann-Hilbert boundary value problem for el-
liptic systems of first order equations, and establish an integral expression together
with a priori estimate of solutions for the, modified boundary value problem. Fi-
nally by using the above estimates and the Leray-Schauder theorem, the solvability
of the above problem with some conditions is verified.

In Chapter 3, we first give the general formulas of solutions of discontinuous
Riemann-Hilbert boundary value problem for analytic functions in the upper half-
plane and unit-disk, which include the Keldych-Sedov formula in the upper half-
plane as a special case. Moreover, we discuss the discontinuous irregular oblique
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derivative problem for nonlinear elliptic equations of second order in multiply con-
nected domains. It is known that the discontinuous Riemann-Hilbert boundary
value problems possess the important applications to mechanics and physics.

In Chapter 4, we introduce two approximate methods for solving boundary value
problems for elliptic equations and systems, i.e., the Newton imbedding method
and variation-difference method, in which we give the approximate solutions of the
corresponding boundary value problems for nonlinear elliptic complex equations of
first order and second order, and their error estimates.

The Tricomi problem for the Chaplygin equation K (y)uzz+u,, = 0 is a famous
problem in subsonic and transonic gas dynamics. L. Bers in 1958 posed the Tricomi
and Frankl problem for the Chaplygin equation in multiply connected domains, but
up to 2007 one has not seen that the problems are completely solved. Chapter 5
deals with the oblique derivative problem for second order nonlinear equations of
mixed type in multiply connected domains, which includes the Tricomi and Frankl
problems of Chaplygin equation as its special cases. We get the representation of
solutions of the boundary value problems for the equations, and then prove the
uniqueness and existence of solutions for the problems by a new complex analytic
method.

In Chapter 6, we introduce the applications of complex analysis to continuum
mechanics, mainly some free boundary value problems in gas dynamics and filtra-
tion theory are handled, where some parts of the boundaries of the domains are
unknown and thus called free boundaries. By using the method of quasiconformal
mappings, hodograph and other methods, the free boundary value problems can be
reduced to discontinuous boundary value problems for linear or nonlinear elliptic
complex equations in fixed domains. Then the above free boundary value problems
can be solved. In final four sections, the inverse problems for quasilinear elliptic
systems of first order equations with Riemann-Hilbert type map and elliptic equa-
tions of second order from Dirichlet to Neumann Map are discussed, which possess
important application in mechanics and physics.

Chapter 7 concerns some boundary value problems for some functions of several
complex variables in the polycylinder and the Clifford analysis.

The contents of Chapter 8 are generalizations of some contents of elliptic equa-
tions and systems in the plane to nonlinear elliptic, parabolic equations and systems
of second order in higher dimensional domains. Firstly, a priori estimates of so-
lutions for the above boundary value problems with some conditions are given,
and then by using the estimates of above solutions and fixed-point theorem, the
existence of solutions for the above problems is proved.

T'wo special features are presented in this book: one is that elliptic and parabolic
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complex equations are almost discussed in general and nonlinear cases, and several
boundary value problems are studied in multiply connected domains, and the other
is that several complex analytic methods are used to investigate various problems
on elliptic, parabolic, hyperbolic equations and systems, as well as equations of
mixed type.

The contents in this book originate in the author and his cooperative colleagues,
and great majority of the results is firstly obtained by them in the world. Many
questions and problems investigated in this book deserve further investigations.
The author sincerely hope that the reader will enjoy reading the book.

Finally, the preparation of this book was supported by the National Natural
Science Foundation of China, its support has provided a wonderful environment to
obtain many results reported in this book. In the meantime the author would like
to acknowledge the editorial staff of Science Press for making it possible to publish
“this book.

Guochun Wen
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Chapter 1

Foundational Theorems of Nonlinear
Quasiconformal Mappings and
Quasiconformal Shift Theorems

In this chapter, we first introduce the foundational theorems of nonlinear quasicon-
formal mappings, mainly the existence and uniqueness of homeomorphic solutions
for some nonlinear elliptic complex equations from the general N + 1-connected
domain onto an N + l-connected circular domain are proved by a new method.
Next, we consider the nonlinear quasiconformal shift theorems in some multiply

connected domains.

1.1 Existence Theorems of Nonlinear Quasiconformal
Mappings in Multiply Connected Domains

We discuss the nonlinear uniformly elliptic complex equation in the form
wz=F(z,w,w,;), F(z,w,w,) = Q(z,w,w,)w, in D,
Q1(z, w, w,)+Q2(z, w,w, )Wz /w,, for w, # 0 in D,

Q(Zawvwz):
0, for w,=0inD, or z¢ D, (1.1.1)

where D is an N+ 1-connected bounded domain in the complex plane C with the
N+1 boundary components I'; € C, (0 < p<1,5=0,1,...,N, Iy = I'n41), and
I';(j=1,...,N) are located in the domain Dy bounded by IG. In particular, the
linear complex equation

wz = Q(z)w, in D, (1.1.2)

is the so-called the Beltrami equation. Suppose that the complex equation (1.1.1)
satisfies Condition C, namely

(1) Qj(z,w,U) (j = 1,2) are measurable in z € D for any continuous function
w(z) in D and any measurable function U(z) € Ly, (D), and continuous in w € C
for almost every point z € D, U € C, where pg,p(2 < po < p) are positive
constants.
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(2) The complex equation (1.1.1) satisfies the uniform ellipticity condition

|F(z w, U]) F(z w, Uz)l q()lUl Uzl, (1.1.3)

for almost every point z € D, in which w, Uy, Uz € C and ¢gg (< 1) is a non-negative
constant. It is clear that
2 <
wy=F(z,w,w;), F(z,w,w;)= { qow,i/ZZ, for e <1,
: Qw; %2, for |jw,|>1,
satisfies Condition C. ,

There is no harm in assuming that the domain D is an N+4-1-connected circular
domain with the boundary I' = U;iol’j (Ij=lz—2jl=7r;,j=0,1,...,N, 29 =
0,79 = 1), because otherwise, through a conformal mapping {(z) from D onto the
circular domain {2 such that 0 € 2 and 1 € 312, the complex equation (1.1.1) is
reduced to

wg = Qlz,w, 'wCCI(z)] [C'(Z)/C’(Z)]wc,
obviously the above equation satisfies Condition C still.

Theorem 1.1.1  Suppose that the'complea: equation (1.1.1) satisfies Condition
C. Then there exists a homeomorphic solution w = w(z) of (1.1.1) in D, which
quasiconformally maps from the N+1-connected domain D onto an N+1-connected
circular domain G, such that w(0) =0 and w(l1) = 1.

Proof If w(z) is a homeomorphic solution of equation (1.1.1), and substitute it
into the coefficient Q(z) = Q(z,w,w,) of (1.1.1), then w(z) is the solution of the
linear Beltrami equation (1.1.2), which can be expressed the form

w(z) = B[x(2)], x(2) = 2 + Tw — Tow, w(z) € Ly, (D), (1.1.4)

where x(2) = 2+ Tw(Tw= -1 f f ~do¢, Tow = Tw|z=p) is a complete homeo-
morphism of Beltrami equatlon 1. 1 2) in C (see [46]). Let the solution w(z) be
substituted into (1.1.1), we have

w(z) = Flz,w(z), ¢ (x)(1 + Mw)]/ &'(x), i.e.
w(z) = Flz,w(2),e"® (1 + Nw))e W), (1.1.5)

in which W(z) = In #'(x) and 0 < arg &’ (x(0)) < 2r is selected. From Theorems
1.1 and 1.3, Chapter III, [48]9), we can get that w(z), W(z) = In &' (x) satisfy the
estimates

Calw(z), D)< My, Ly, [|ws|+|ws), D < Mz, Colln &[x(2)], D.] < Ms, (1.1.6)
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where a = 1-2/pg (po > 2), M;j = M;(g0,p0, D), j = 1,2, M3 = M3(qo0,po, D, Dx),
in which D, is a closed subdomain in D.

On the basis of the above discussion, we can first suppose that the coefficient
Q(z,w,w;) = 0 in D\D,, and introduce a subset Bjs in the Banach space B :
C(D.) x C(D.), whose elements are the systems of functions: g = [w(2), W(2))
with the norm ||g[| = Clw(z2), D.] + C[W(z), D.] satisfying the conditions

Clw(z), D.] < My, C[W(z), D.] < Ms, (1.1.7)

where M;, M3 are as stated in (1.1.6). It is easy to see that By is a closed, bounded
and convex set in B.

We arbitrarily choose a system of functions g = [w(z), W(z)] € Bas, and sub-
stitute w(z), W(2) in the integral equation

w*(2) = f(z,w, W,Ilw*), f = Flz,w,e” (1 +Iw*)]e”". (1.1.8)
Noting Condition C, we get
Lp, [f(z,w, W, TIw*), Dy] < qoLyp,[f (2, w, W,TIw*), D,]
< QolAp Lynlw?, D] +7/%],  (1.1.9)
Ly, [f (2, w, W, Ilwi) — f (2, w, W, llw3), D.] < o Apo Lpo [w] —w3, D], (1.1.10)

where pg (> 2) is a positive number, such that ggA4,, < 1 (see Lemmas 1.1 and 1.5,
Chapter II, [48]9), or Theorem 3.4.1, [62]). Applying the principle of contraction,
a unique solution w*(2) of (1.1.5) can be obtained, and

Ly w*, D.] < ﬁwl/ﬂ’ = M, < oo. (1.1.11)
Po

Moreover, taking into account
|w* (2)] < go |1 + Iw*| < go + golTlw™|, (1.1.12)

and setting

(1.1.13)

Q) w*/(1+Ikw*), for z€ D, and 1+Ilw*#0,
2) =
0, for 2¢ D, or 1+ Iw* =0,

we know that x*(2) = z + Tw* — Tw} is a complete homeomorphism of the linear
Beltrami equation

wz —Q(2)w, =0, |Q(2)|<qp<1, (1.1.14)
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such that x*(0) = 0, x*(c0) = oo, and there exists a unique univalent function
9*(x), which maps the domain x(D) onto the N + 1-connected circular domain G
with the conditions *(0) = 0, #*[x*(1)] = 1, hence

w*(2) = ¢*[x*(2)] (1.1.15)

is a homeomorphic solution of (1.1.14), which quasiconformally maps the do-
main D onto the domain G, such that w*(0) = 0 and w*(1) = 1. Moreover
w*(2), In &'[x*(2)] (0 < arg $*'(0) < 2m) satisfy the estimates in (1.1.6), this shows
g" = [w*(2), W*(2)] € Bum, we-denote by g* = S(g) the mapping from g, € By
into g* € Byy.

In the following, we shall verify a fact: g* = S (9) is a continuous mapping from
B into a compact subset of itself.

It is free to select gn = [wn(2), Wn(z)] € By (n =0,1,2,...) with the condition
llgn — gol| — 0 as n — oco. Denote

0% = S(gu) = [w(2), W2(2)] € Bag (n = 0,1,2,...),

where wj, (2) = &}, x5 (2)], x5(2) = 2+ Tw;~Towy, Wi(z) = In 82’ [x%(2)], Tow, =
Tw}|,=0, and
wp(2) = fz,wn, Wy, [Iw}), n=0,1,2,.... (1.1.16)

From the above equations, we get

w;(z)—w(’;(z) = f(z)wn’ Wn,Hw;)—f(z,wn, W'n’ HWS)-f-Cn(Z),
en(2) = f(2,wn, Wy, Iwg) — f(2, wo, Wo, Tlwg). (1.1.17)

Noting Condition C, we have

len (2)] <If (2, Wa, Wi, Twg) — f(2, wn, Wo, Tlwg)|
+ 15 (2, wn, Wo, Twg) —f (2, wo, Wo, Ty )|
< 2go|e™oWr — 1] |14 T}
+ | f (2, wn, Wo, Ilwg ) —f (2, wa, Wo, Iwg)|
= hn(2). (1.1.18)

Bécause hn(z) converges to 0 for almost every point in D,, as stated in the
proof of Lemma 1.2, Chapter III, [48]9) or the formula (2.4.18), Chapter 2 be-
low, Lp,[cn, Du] — 0 as n — oo can be verified. Furthermore from (1.1.17), we

have
1

—1L » Dl 1.1.19
1= qodp, polCn ] ( )

Lpg [wi(z) — wg(2), Di] <
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therefore Ly, [w(2) — wg(z),Ds] — 0 as n — oo. On the basis of Lemma 1.1,
Chapter 11, [48]9), we can derive Ca[xh(2) — Xx§(2), D] — 0 as n — oo, where
a =1—2/pg. By the convergent theorem of sequence of domains (see (48]12)), we
can prove that w}(z) = @X[xx(2)], #}'[x%(z)] in D, uniformly converge w(z) =
% [x(2)], 83'[x4(2)] (# 0) respectively, consequently

195~ 9311 =Cluws(2)~w}(2), D]+ CIWz(2)~ W (2), Du] =0 s n— 0.

This shows that g* = S(g) is a continuous mapping in Bjy.

Next, we arbitrarily choose g, = [wn(2), Wp(z)] € Bmu (n = 1,2,...). Denote
grn = 8(gn) = [w}(2), W (2)] € By (n=1,2,...), it is clear that w}(z), W} (z) =
In &;'[x%(z)] satisfy the estimations in (1.1.6), hence we can choose their subse-
quences in Q,, which uniformly converge to wj(z), W (z) respectively. Moreover
{lgn — 93|l — 0 as n — oo can be derived. This shows that g* = S(g) is a mapping
from B into a compact of itself.

By using the Schauder fixed point theorem, there exists a system of functions
g = [w(z), W(2)] € Bps, such that

9= S(9) = [w(2), W(2), w(z) = {x(2)],
W(z) =1In & [x(2)], x(2) = z + Tw — Tow,
and w(z) satisfies V
w(z)= flz,w, W,llw) = F[z, w(z),eW (*) (1 +1w)je~W(*)
= Flz,w(z), &' (x)(1+w)]/ ¥'(x), ie.
&' (x)w(z) = Flz,w(z); &' (x)(1 + w)], (1.1.20)

for almost every point in D,. Taking into account wz = &' (x)w(2), w, = &' (x){1+
Nw), we see that w(z) = $[x(2)] is just the homeomorphic solution of the nonlinear
uniformly elliptic complex equation (1.1.1). '

If we multiply the coefficient Q(z,w,w,) of complex equation (1.1.1) by the

function
() = { 1, z € Dp={z|dist(z, 'U{0})>1/n}, .12
0, z¢ D,,
where n is a positive integer, we obtain the complex equation
wz = Fp(z,w,w,), Fn = 0n(2)F(z, w,w,). (1.1.22)

Obviously, (1.1.22) is also satisfied Condition C and its coefficient is equal to 0 in
the neighborhood of the boundary I' and z = 0. As stated before, we have proved
that there exists a homeomorphic solution

wn(z) = djn[Xn(z)]a Xn(z) = 24+ Twy, — Townp, (1.1.23)
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of equation (1.1.22), and {xn(2)}, {wn(2)} satisfy the estimations in (1.1.6), hence
we can choose their subsequences, which uniformly converge to xo(2), wo(z), and
wo(z) = Po[x0(2)], xo(z) is & homeomorphism in D, and $y(x) is a univalent
analytic function in xo(D), such that wg(0) = 0, wo(1) = 1. Denote by wo(2) the
solution of the integral equation

wo(2) = flz, wo(z), B5[x0(2)], Nwo],
f=Flz,wo(z), B [x0(2)](1+Two)]/B5[x0(2)]- (1.1.24)
Setting wy(2) = flz, wn(2), 8] [xn(2)],wy], as stated in (1.1.18), we can prove

that for any closed subdomain D, of D, provided that n is large enough, we must

have

|1z, wn(2), @ [xn(2)], wo] — flz, wo(2), Ph[x0(2)], Muwo]|

<20 | 2P| 1 g+ 12,042, 25 x0 (2, T
~ flzun(2), Blxo(), ot = hn(2), (1125

from the above formula, we see that hy(z) converge to 0 for almost every point in
D, as n — oo. Thus as stated before, we can obtain

Lp, [lwn(2) — wo(2)] + [M(wn(2) — wo(2))|, D] — 0, as n — oo,

and xo(2) = 2z + Twy — Towo, this shows that wg(z) = Hy[xo(2)] is a required
solution of equation (1.1.1).

Besides by the similar method, we can prove the foundational theorems of
quasiconformal mappings from the N+1-connected domain onto an N+1-connected
rectilinear slit domain with N parallel rectilinear slits, and N+1-connected circular
slit domain with N circular slits. In [31], the author obtained the corresponding
result of Theorem 1.1.1 for the quasilinear complex equation (1.1.1) with Q; =
Q;i(z,w) (§ = 1,2) by using another method.

Finally, we mention that if the coeflicient Q(z) of the linear Beltrami complex
equation .
wz = Q(2)w, in D (1.1.26)

is measurable and satisfying the non-uniformly elliptic condition |@(z)| < 1 in D,
then the foundational theorem of quasiconformal mappings is not must held. For
instance, for the unit disc D = {|z| < 1} and the coefficient

nzz|z12n—2

in which n is any positive integer, it is easy to see that |Q(z)] — 1 as |2| — 1, i.e.
the complex equation (1.1.26) is non-uniform ellipticity in D with the degenerate
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boundary I" = {|z| = 1}, and the complex equation (1.1.26) with the coefficient as
stated in (1.1.27) possesses the homeomorphic solution

¢(2) = T#P" in D, (1.1.28)

which maps the unit disc D onto the whole ¢ plane C. It is not difficult to see that
any homeomorphic solution of (1.1.26), (1.1.27) can be expressed as the form

w(z) = 8[{(z)] inD

(for example, see Theorem 3.30, [46]), in which {(z) possesses the form (1.1.28),
and @(() is a univalent entire function, namely

?(¢) =al+b(a#0),

where a,b are complex constants. This shows that the homeomorphic solution of
(1.1.26), (1.1.27) maps the unit disc D onto the whole w plane, hence in this case
the Riemann mapping theorem cannot hold.

1.2 Uniqueness Theorems of Nonlinear Quasiconformal
Mappings in Multiply Connected Domains

In order to prove the uniqueness of quasiconformal mappings from the general
N +1-connected domain onto an N +1-connected circular domain, we need to add
a condition, i.e. F(z,w,U) in equation (1.1.1) satisfies the inequality:

|F(2,w1,U) — F(z,w3,U)| < R(2, w1, wa, U)wy — wy|, (»1.2.1)

where w; = w;(z) (j = 1,2) are any continuous functions in D\{0} and the real-
valued function R(z,w:,ws,U) € Lpo(D) (2 < pg < p).

Theorem 1.2.1 Suppose that equation (1.1.1) satisfies Condition C and (1.2.1).
Then the homeomorphic solution w(z) of (1.1.1) from the N +1-connected domain
D onto an N+1-connected circular domain G is unique, provided the solution w(z)
satisfies one of the following two conditions:

1) Three points on the boundary I' remain to be not variable.

2) One boundary point and one inner point of the domain D remain to be
invariable.

Besides, we require that the solution w(z) possesses the expression

w(z) = #[((2)] in D, = {z|dist(z,I") < (e > 0)}, (1.2.2)
in which ((z) is a fired homeomorphism in D, from Iy(j =1,...,N) onto the

circles Lj (j = 1,...,N), and #(¢) on {(I')(j = 1,...,N) is an analytic function.
Note that if Q(z,w,w,) = Q(z) in De, then the above condition (1.2.2) is true.
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Here we mention that for proving uniqueness of quasiconformal mappings from
the N +1-connected domain onto an N +1-connected rectilinear slit domain with
N parallel rectilinear slits, or N +1-connected circular slit domain with N circular
slits, the condition (1.2.2) should be canceled.

Proof There is no harm in assuming that the domain D is an N 4 1-connected
circular domain as stated in Section 1.1. If w;(z), wa(z) are two homeomorphic
solutions as stated in the theorem and w; (2) # wa(z). There is no harm in assuming
that

|lwi(z) — wj| = [wa(2) —w;| =p; on I (5 =0,1,...,m)
and
o — (D) o — A2 - ’
|wi(2)—wj|=p; " #|w2(2) ~w;|=p;” on Iy, j=m+1,...,m,
w} # w3, j:m’+1,---,.Na
where w; is the center of the circles wi (), wa(3) (j = 0,1,...,m’), and w} # w?,
in which w}, w? are the centers of the circles wi (I}), wa(Iy) (j = m' +1,...,N),

obviously m < m’ < N.
We can symmetrically extend the function wg(z) (k = 1, 2) onto the outside of
the domain D with respect to the circles I'; (0 < j < m), namely ‘

’qu(Z), z€ _E:
2

Wi(z) = ___Li twj, z€D; (j=0,1,...,m), (1.2.3)
wi(r3 /) 2= 25+ 2;) —w;
where D; (j = 0,1,...,m) are the symmetrical domains of D with respect to the

circles I'; (0 < j < m). The function W(z) = Wy (z) — Wa(z) satisfies the uniformly
elliptic complex equation in the form

Wi = Q*(2)W, + A(2)W, (1.2.4)

for almost every point in D} = DU{l < [¢| < 1+ n}U{r —n < |z - 2| <
iU U{rm — 1 < |2 — 2m| < Tm}, in which |Q*| € g in Dy}, Provided
is sufficiently small, W(z) has not any zero point in {C\D} N Dy u D;‘,, where
Dh={1/(l+n) <zl <Yu{r <lz—z1]| < r}/(ri—=n)}U--U{rm < |2— 2| <
r2,/(rm — 1)}, and W(z) can be expressed as

W (z) = &[x(2)]e?®. (1.2.5)

Denote Ioy = {|z| = 147}, Tog = {|2| = 1/(14+n)}, Ijn = {lz— 2| = rj—n}, [jy =
{lz = 2| =72/(r; —m)},j =1,...,m, thus we have
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(L L WO gy im14m,
wi(1/2) wa(l/2)  wi(Quwz () <
W(z)={ S2W(E) 2 (1.2.6)
- L for {z—zj|=5—"—=r; -7,
[w1(¢) —w;][wa(¢) —w;] rle=] K=zl
\ j=1,...,m.

Hence we get

1 1
EEAP"” argW(z)= ﬂ[Aﬁm argw1(C) + Ap, argwa(() — Ap, arg W(()]

1
=2- %Afon argW(¢),

1
%Apj,, argW(z) = %[Afjn arg(w: (¢) —w;)
+Ay, arg(wa(()—w;)—Ap, arg W(()]

1 )
=-2— %Afjn argW((), 7=1,...,m,

and
1

A, arg W (@) = 5 Ar arg{(wi(€) = wy) = (wa(¢) - wy)]

= 3= { an o Oyl ar, [1- 28]}
=—1(Gj=m+1,...,m/)
where m’ < N. Noting that w(z) = wy(2) — we(z) possesses the expression as in
(1.2.2), where &(¢) is an analytic function on ((I};) (j = m'+1,...,N), we can
verify
%A,} argW(z) <0, j =m'+1,...,N. (1.2.7)
Setting that
Ty = ToyU Ty U+ U Ly U Ty U=+ U Ty,
[y=lpyUlyU- Ul Ul U Uy,
from the above formulas, we get
1

271_qu a.rgW(z) =Np+Nr

1 1 &
22(1*7")"%‘]1",, argW(z) + 5 Z Ar; argW(z)
j=m+1
€£2—Np, 2Np+ Np € 2. (1.2.8)

where denote by Np, Nr the totals of zero points in D and I', which contracts the
condition 1) or 2). Hence W(z) =0 in D, i.e. w1(z) = wa(z) in D.
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1.3 General Quasiconformal Shift Theorems in Multiply
Connected Domains

Let I;(j = 0,1,...,N), Lj(j = 1,..., M) be the boundary contours of an N+
M +1-connected domain D in C, where I; (j = 1,...,N), L; (j = 1,..., M) are
situated inside I. In D, there are some mutually exclusive contours v; (j =
1,...,n), ; (j =1,...,m). We assume that

I'= UJ ol L= Ug 1L, 1=Vl L, v=UG_,7; € CL (0<pu<1),

and denote
D‘—U 1Dy, DI -U 2Dy ‘=(D‘UD[)HD

Dt =D\D~, Dy =D~ nDj, D} = (D*nD-\D;,

where D, and D;; are the domains surrounded by +y; and I;, respectively. For
convenience, there is no harm in assuming that D is a circular domain, and I'y =
{lz| =1}, and z = 0 € D*. We deal with the nonlinear uniformly elliptic complex
equation of the first order

wy = F(z,w,w;), F(z,w,w,) = Q(z,w,w,)w, in D, (1.3.1)

and suppose that (1.3.1) satisfies Condition C’:

(1) Q(z,w,U) is continuous in w € C for almost every point z € D, U € C,
and is measurable in z € D for all continuous functions w(z) and all measurable
functions U(z) € Dt U D~\{0}.

(2) The complex equation (1.3.1) satisfies the uniform ellipticity condition

' (2 w, Ul) —F(z w, Ug)l quUl Uzl, (132)

for almost every point 2z € D, in which w,U;,Us € C and go (< 1) is a non-negative
constant.

The quasiconformal shift theorem for the nonlinear complex equation (1.3.1) in
D* requires assuming the continuity of a homeomorphic solution w(2) in DE\{0}
with the condition w(0) = oo, which also has to satisfy the shift conditions

whaft)] =w (2), t € v, wha®)] =w(z), tel,
whla®)] = w™(z), te L, wt|a@®)]=w(z)+ih(t), te T, (1.3.3)

where a(t) maps each of v;, ;, L;, and I'; topologically onto themselves. They give
positive shifts on v UT and inverse shifts on {U L, in which afa(t)] = ¢, t € LUT,
a(t) has the fixed points a; € I (j = 0,1,...,N) and

Cple(t), 0D < d < 400, |/ ()} > 1/d > 0, (1.3.4)



