

Pascal™:
Text and Reference

second edition

John B. Moore

Reston Publishing Company, Inc.
% A Prentice-Hall Company

Reston, Virginia

To Barb

- a very special person

ISBN 0-8359-54404

©1984 by Reston Publishing Company, Inc.
A Prentice-Hall Company
Reston, Virginia 22090

All rights reserved. No part of this book
may be reproduced, in any way or by any means,
without permission in writing from the publisher.

10 9 8 7 6 5 4 3 2 1

Printed in the United States of America

Preface to the Revised Edition

This revised edition contains a number of enhancements and updates
which reflect the evolutionary nature of modern computing.

One important change is the use of the keyboard as the default source of
input data in the example programs. This change is a reaction to the growing
number of personal computer users and the proliferation of interactive
applications.

Appendix C has been rewritten to provide a complete description of the
Waterloo Pascal implementation of the language. It reflects the latest
specification of the compiler. Waterloo Pascal is being used by an
ever-increasing number of educational institutions and individuals because of
its comprehensive facilities, superb diagnostics, and excellent reliability.

Other improvements include: the addition of many new programming
problems; over one-hundred new index entries; a consistent approach in the
algorithms used in Chapter 14; and more comprehensive explanations of
input-output operations in Chapters 2, 5 and 12.

I would like to acknowledge the helpful suggestions of many who have
used the first edition of this book. Valuable advice concerning the typesetting
of the material was received from Bruce Uttley. The material in Appendix C
is taken in large part from section G of Pascal Reference Manual and
Waterloo Pascal User's Guide by Boswell, Welch and Grove published by
WATFAC Publications Ltd., Waterloo Ontario. The permission of the authors
and the publisher to use this material is acknowledged and appreciated.

Waterloo Ontario Canada John B. Moore

Preface

Pascal is rapidly becoming one of the most widely used programming
languages in the world. This growth is due to a number of factors most
important of which is the discipline it imposes upon the programmer. The
rules of the Pascal language, coupled with good programming style, result in
good programs.

Goals. The purpose of this book is to describe how to use the Pascal language
correctly and effectively. It is a comprehensive description of standard Pascal
although unique features of three particular implementations of the languages
are summarized in the appendices. It is intended for the person who wants to
make a systematic study of the language and who, when finished, requires a
solid reference.

Assumptions. It assumes the reader has no previous programming experience.
Readers already familiar with programming concepts and/or another
programming language can quickly read those paragraphs and explanations
related to algorithm development and focus on the attributes of Pascal.
Problems and exercises are taken from a wide variety of subject areas.

Pedagogy. The examples chosen to illustrate each component of the language
are as simple as possible. In this way the reader can focus on the
programming concept without becoming enmeshed in the in logic needed to
solve the illustrative problem. The examples are complete programs. All have
been run and listed using the Waterloo Pascal processor which accepts
standard Pascal.

The material is organized so that the reader may proceed sequentially
through the entire text. Each topic is presented using a four-step sequence.(1)
Here's what we are trying to do; (2) Here's how we can do it with our existing
knowledge; (3) Here's a better way to do it; (4) Here's what we did. Each
chapter begins with questions which the chapter answers and concludes with a
summary of the key concepts and important programming skills presented.

Exercise questions are found throughout. These test the reader’s
understanding immediately following the presentation of new material. In the
author’s view, these questions are one of the most efficient ways to imbed new
knowledge. A variety of programming problems is found at the end of each
chapter. They range in difficulty from very simple to complex. Some involve
simple mathematical peculiarities which stimulate the reader’s curiosity.
Others are designed to massage the programming knowledge developed in the
chapter.

Throughout the book, emphasis is placed on good programming style.
Indentation rules, naming conventions and commenting guidelines are
explicitly stated and consistently followed.

Organization. The book is divided into three parts: Statements and Values,
Data Structures and Dynamic Variables, and Appendices.

Part I describes the statements which are used to process the three basic
kinds of values - numbers, characters and Boolean (true-false) values.

Chapter 1 describes the five-step sequence which is followed when a
computer is used to assist the problem-solving process. The first example
results in a complete program which the student may enter and run. Sufficient
programming detail is presented in the three examples to allow a reader to
solve a wide variety of simple problems using the examples as prototypes.
Attention is devoted to the acceptance of errors and the understanding of
diagnostic messages.

Chapter 2 begins the rigorous study of numeric processing. Constants,
variables, value assignments and simple input-output are covered in detail.

Chapter 3 describes Boolean values and operations and then shows how
they are used in the decision-making statements of the Pascal language.

Chapter 4 illustrates, compares and contrasts the three statements used to
control loops.

Chapter 5 explains character and text processing. It also summarizes
input-output using READ and WRITE with the standard files INPUT and
OUTPUT. The difference between numeric and non-numeric input-output is
one of the most difficult parts of the language to learn. Consequently, detailed
examples and explanations are given.

Chapter 6, extends the readers knowledge of types to include enumerated
and subrange types. A summary of the processing rules for all scalar types is
provided.

Chapters 7 and 8 describe functions and procedures respectively.
Functions, being simpler, are explained first. Particular attention is paid to
rules of scope and the meaning of the terms global and local identifiers.
Chapter 8 shows how procedures differ from functions both in form and
purpose. The last section of the chapter gives guidelines for partitioning
algorithms into procedures. It also suggests criteria for choosing the nesting
structure of blocks.

Part II of the book begins with an overview of data structures in general
and Pascal data structures in particular. Differences among arrays, records,
sets and files are emphasized.

Chapters 10 through 13 describe the four predefined structures available
in the language. Arrays, having the most utility, are described first. The
material describing records and files builds on the knowledge already gained.
Sets are described in Chapter 13. An understanding of other data structures is
not necessary to use sets and this material can be studied independently of
arrays, records and files.

The final chapter describes the use of pointer variables. Individuals not
familiar with memory concepts and indirect addressing often find the use of
pointers one of the more difficult programming ideas to grasp. Consequently, a
very simple example is presented early in the chapter to show the mechanics
of their use. This leads to a discussion of the two most common kinds of data
structures requiring pointers, namely linked lists (of which stacks and queues
are specify instances) and trees. Examples are provided which demonstrate the
use of binary trees in information retrieval applications.

Part III of the book contains six appendices. The first two provide a
reference for character sets, standard identifiers, operators and the syntax of
the language. Appendix C describes the implementation dependencies of the
Waterloo Pascal compiler. Appendices D and E summarize those features of
Pascal/VS and IBM Pascal for the IBM Personal Computer which are not
part of standard Pascal. Appendix F gives a number of suggestions for
reducing debugging time and for improving memory and execution-time
efficiency.

No one writes a book without a lot of help. I would like to thank Kay
Harrison for her excellent work in entering the original, readable(?) draft of
the manuscript and for making the innumerable changes in subsequent
versions. Mike Ruwald designed the Script macros used to format the text.
Jim Dodd found many typos and made excellent editorial suggestions. For
errors that may yet be present, I take full responsibility.

To you the reader, I hope you find this a useful and enjoyable book. I
have tried to keep your needs in mind from start to finish.

Waterloo, Ontario Canada John B. Moore

Preface to the Student

This is a book that teaches you how to speak a language —
a language which permits you to use a computer to help solve
problems. The language is called Pascal. It was originally
developed by a professor to help students learn the principles of
computer programming. Because he designed the language so
well, it has rapidly become one of the most widely-used
languages in the world.

Reading a book about computer programming is like
reading a book about playing the piano — there is only so much
you can learn without intense practice. To become fluent in the
use of the Pascal language, you must practise, experiment and
test your knowledge continually. Good luck and good
programming.

Part I:
Statements and Values

TABLE OF CONTENTS

CHAPTER 1: Getting Started PSR |
1.1 What Can a Computer Do? Fe e 1
1.2 Why Do We Use Them? e o ooy ¢ o L
1.3 The Five Steps in Problem Solving Vs v oels o w ?
1.4 How About an Example? 5 @ s iy
1.5 Exercise 1.1 J
1.6 What Happens When An Error is Made? 5
1.7 A Second Example 18
1.8 A Third Example 21
1.9 Exercise 12 s s v 05 5.6 56 6 @5 6 8 6.5 8 605 6 6 55 3 § 05 & 3 24
110 Program Styleé = « + s s : v s cams sws res 5w s s ms s 25
LI Summaryo i ittt e e e 26
CHAPTER 2: Numbers, Arithmetic and Variables 29
2.1 Numbers in Pascal 29
2.2 INTEGER Values 0..... 29
23 EXerc18¢ 2.l .5 s sms cm o smm s sms P ws W e E e E s 33
2.4 REAL Numbers i it 34
2.5 Constant Declarations 39
26 Variablés . s o s s s swas smEs s m s e s s w e bW R 40
2.7 EXercise 2.2 i e e e e e e e e 42
2.8 The Assignment Statement 43
2.9 READing Values from the INPUT File 43
2.10 Exercise 2.3 e e e 49
2.11 Summary o e e e e e e e e e e e e 50
2.12 Programming Problems 51
CHAPTER 3: Decision and Control 55
3.1 BOOLEAN Values 55
3.2 Exercise 3.1 59
3.3 Conditional Execution (The IF Statement) 62
3.4 Selecting One of Several Cases 67
3.5 Exercise 3.2 e e e 70
3.6 SUMMATy v e e e e e e e e e e e e e e 73
3.7 Programming Problems 74
CHAPTER 4: Loop Controlu 81
4.1 Loops AND Loop Control 81
4.2 The WHILE Statement: A Summary 81
4.3 REPEAT-UNTIL, 83
4.4 The FOR Statement 85
45 EXErcise 4l o v :wwpsmms sws spopsw@s s msams 0§ 8 87
4.6 Labels and The GOTO Statement 90

4.7 Exercise 4.2 e e e e 93
4.8 SUMMALY « ¢ s o 5 s s m s s w e s 6 ma 58 8 8w ow s e w e w 93
4.9 Programming Problems 94
CHAPTER 5: Characters and Text Processing 97
5.1 Character Values 97
5.2 Operations With CHAR Values 99
5.3 Text File Input and Output 100
5.4 Exercise 5.1 e 103
5.5 Numeric INPUT and OUTPUT 104
5:6 Exercise 52 i s u: cms sms s w3 sm e @85 EHE i @@ 108
S0 SUIMMALT o o s v w5 cme s mm s moonvw w v @s 6@b o mws o 109
5.8 Programming Problems 110
CHAPTER 6: Types of Values 115
6.1 Typesof Values : uo: o ms sms smas smasmms s ms o949 115
6.2 The Standard Ordinal types - A Summary 116
6.3 Enumerated types 117
6.4 Subranges 123
6.5 Type Declarations . . « s« s w o s s w w6 5 @ 95 s o 55 5 55 ¢ o 126
6.6 Exercise 6.1 128
6.7 Summary e e e 129
6.8 Programming Problems 129
CHAPTER 7: Functions e un... 133
Jol, INTOAUEHOR . o« ws sms smms wws ams sma sas swa s s 133
7.2 An Example FUNCTION 134
7.3 A Second Example 137
7.4 Nested Function Declarations 143
7.5 Rules of Scope 145
7.6 Exercise 7.1 e 148
7.7 Recursive Functions 150
78 Exercise 12 : s s sws s 95 s @5 5 ¢ a8 @5 50w @ 153
7.9 Summary e 154
7.10 Programming Problems 156
CHAPTER 8: Procedureso.... 159
8.1 What are Pascal Procedures? 159
82 A First Example 160
8.3 Using Procedures to Return Values. 163
8.4 Retaining Values of Parameters 165
8.5 Global Variables: Good or Bad? 167
8.6 Exercise 8.1 168
8.7 Recursive Procedures 170
8.8 The Directives FORWARD and EXTERNAL 173
8.9 FUNCTIONs and PROCEDURE:s : A summary 175

8.10 Procedure and Function Parameters 177

8.11 Program Design 179

8.12 Exercise 8.2 Program Design 185
B3 SUMMAIY « s 55 swws sms s@s s @i sMBE a5 ¢80 @5 @ o 186
8.14 Programming Problems 186
CHAPTER 9: Collections of Data: An Overview 191
9.1 Attributes of Collections of Data 191
9.2 Pascal Data Structures 192
0.3 SUMHALY « : w 9+ s ws s w3 s 84 585 s AR s WEHS BH S 58 5 3 195
CHAPTER 10: Arrays o o i i o e et e e e e e e e e e e 197
10.1 An Example Problem 197
10.2 Basic Rules of Array Usage 200
10.3 A Second Example 201
10.4 Exercise 10.1 204
10.5 Two Dimensional Arrays 208
10.6 ExefCise 102 « 5 swws smws s smws smes s 82w 212
10.7 Higher Dimensioned Arrays 213
10.8 An Alternate Syntax of Array Declarations 213
10.9 PACKED Data, . : : v o s s 03 s sogows sms sma s s 215
1010 STRINGS et e e 217
10.11 Exercise 10.3 Strings 224
10:120 SUmMMATY . m ss s m s 53 6@ ms ¢ o @ s oo wm e s oo s oomo 225
10.13 Programming Problems 225
CHAPTER 11: Recordso i v 233
11.1 Concepts and Record Declarations 233
1.2 Using Fields «: : s ossms savimms ams 32 835 sm 235
11.3 The WITH Statement - A convenience 237
11.4 Exercise 11.1 240
11.5 Variant Records o o v v v v v v v i oo v oo o 242
11.6 Record Declaration Syntax: A Summary 247
11.7 Summary e e 250
11.8 Programming Problems 251
CHAPTER 12: Files 257
12.1 File Concepts : s: ¢ v ¢ swws sms svws s85 s =0 257
122 An Example e 258
12.3 File Buffers, GET and PUT 260
12.4 Internal and External Files 263
12.5 TEXT Files : A Summary 264
12.6 Exercise 12.1 e 265
12.7 File Updates i ittt 266
12.8 Sorting Using File Merges 274
12.9 Exercise 12.2 e e e e e e e e 279
12,10 SUMMATY . .« ¢ v v v e e e e e e e e e 279
12.11 Programming Problems 280

CHAPTER 13 Sets . . .« ¢ v v v i mimwenm wowms s @ws o mo oo 283

13.1 Concepts: s 5.5 s e o s s@ms 885 5 6,8 % HE 8 F @ @ § B 283
13.2 Set Declaration and Construction 284
13.3 Operations With Sets 285
13.4 Exercise 13.1 . : i cos swws swms s a5 sws s 9mss s 289
13.5 Four Useful Extensions of Set Operations 290
13.6 Two Applications of Sets 292
13.7 Exercise 1302 . : i s sons snas iomms s @6 s 5§ s 300
13.8 SUMMATY &5 s w6 v @ 55 s 6 5 ¢ &3 5 86 §@ &5 %5 301
13.9 Programming Problems 301
CHAPTER 14: Pointers and Dynamic Structures 305
14.1 Motivation e e 305
142 Vocabulary and Concepts 306
14.3 Exercise 14.1 312
14.4 Pascal Data Structures: A Review 313
14.5 Linked Lists ¢ : ¢ s 55 s wws sows smms s gms ¢ mme s 315
14.6 StACKS . ss smms sme sE e mms @ 8 F i FEw 316
14.7 QUEUES e e e 320
14.8 General Linked Lists 324
14.9 TICES o ¢ o 5 605 ¢ @ a5 6 S B § 6 § B W s & B s s @S § @ & § b 330
1410 SUMMALY & s 2w w5 s s w8 s w s s sm e s §mw o oo w e 338
14.11 Programming Problems 338
APPENDIX A: Character Sets and Standard Identifiers 343
A:l Character Sets . w: : s a o s smos sw@s s@me s muws ¢ 56 343
A2 Specidl Symbols . : . o o i v s s s s n e s v 344
A.3 Standard Identifiers 345
A4 Operators ot e e e 345
APPENDIX B: Pascal Syntax Diagrams 347
APPENDIX C: Waterloo Pascal 351
CI Introductioni v o : s wns 5003 ssmws s@ms 88 9 s 351
C.2 Waterloo Pascal Language Description 353
C.3 Waterloo Pascal Interactive Debugging Facility 362
C.4 Multiple Concurrent Processes in Waterloo Pascal 365
C.5 Waterloo Pascal String Extension 369
APPENDIX D: Pascal-VS, 375
D.1 Declaration Extensionsot 375
D.2 Type EXtenSionS « o ¢ s w5 s w s s s o wo % w o wwn s oo vw oo 376
D.3 Formal Parameters« 376
D4 DirectiVeS w = : s s s smas 56 s o sm @i os & mes 376
D.5 Statements . - « s s v v s1¢ 5w 55 5 we s 5w e E 4w e 5w w 377

D.6 Input-Output Extensions 377

D.7 Standard Procedures and Functions 378
D.8 Other Extensions v i v i v i i et 380
APPENDIX E: IBM Personal Computer Pascal 381
E.l Summary of Extensions 381

APPENDIX F: DEBUGGING HINTS, EFFICIENCY and GENERALITY 385

F.l Debugping HifitS . s : : v s s v w o s smos svmssmws sms 385
F.2 Program Efficiency 385
F.3 Generalization Hints 387

CHAPTER 1: GETTING STARTED

Questions Answered in this Chapter:
1. What is a computer?
2. Why do we use them?

3. How do we use them?

1.1 What Can a Computer Do?

Computers are attributed with many remarkable powers. However, all
computers, from the large ones used to control the space flights to the
micro-sized ones you can hold in your hand, are simply collections of
electronic components which have three basic capabilities.

First, they have circuits which perform the four basic arithmetic
operations denoted by the symbols + - * /. An asterisk or star indicates
multiplication; two times three for example is written as 2*3. The slash symbol
represents division. For example, the value of 7/5 is 1.4. When two integers
are being divided, you can request that "integer division” be performed
meaning that the remainder is ignored. Integer division is denoted by "DIV”.
Therefore the expression “15 DIV 4” has a value of 3, not 3.75. Chapter 2
contains a detailed description of arithmetic operations.

Second, computers have circuits which make decisions. Their decision
making capabilities are not such that they can answer a question such as "Will
it rain next Tuesday?” or "Who would win a war between Russia and China?”
The decision making capabilities of a computer are limited to deciding

1. if one number is less than, equal to, or greater than another
number

2. if one character (letter, digit or symbol) comes before, is the same
as, or comes after another character in dictionary order

Third, computers have circuits for performing input and output operations.
That is, they are able to accept input in the form of instructions and data
from human beings. (By data we mean the numbers and characters
manipulated by the instructions.) And computers would still be useless
machines if we were unable to get the results out of the computer in a form
that humans can understand. Thus computers have circuits for sending signals
to printers and display screens.

2 What Can a Computer Do? 1.2

Since all computers have only these three limited capabilities - arithmetic,
decision making and input-output, it is only natural to ask the following
question.

1.2 Why Do We Use Them?
There are three reasons why computers are so widely used.

Speed. First, computers are fast. How fast is fast? A powerful computer can
perform several million instructions per second. If you or I were to do five
million additions of ten digit numbers it would take us — working a forty hour
week -- about four years. Speeds for decision making are also measured in
MIPS (millions of instructions per second) but speeds for many input and
output operations are thousands of times slower because mechanical motion of
cards and paper is often involved. A typical high speed printer for example
prints 1000 lines of output per minute. Information can be sent over a
standard telephone line at about 10 words per second - about 1/25 of the rate
of a high speed printer.

Accuracy and Reliability. In spite of newspaper headlines such as "Computer
Fails Student”, incorrect statements from credit card companies and other
horror stories of computer foul-ups, you and I realize that it is seldom the
machines that make mistakes -- it is the people who make the errors.
Computers are remarkably accurate and operate for months, performing
billions of operations without an error! Because they are man-made, they
occasionally break down and have to be repaired.

A Big Problem = A Set of Little Problems. The most important reason
computers are so widely used is that almost all big problems can be solved by
solving a set of little problems -- one after the other. If each of these little
problems is so simple that it can be solved using the limited capabilities of the
computer, then we end up solving the big problem. For example, doing the
payroll for a large corporation is indeed a big problem. But in order to solve
this problem we need only do the following kinds of things for each person on
the payroll: First, input information about the employee such as hours worked,
rate of pay, etc. Second, do some simple arithmetic and decision making;
Third, output a few lines on a check. By repeating this process over and over
again, the payroll will be finished. Since computers can do all of these
operations quickly and accurately, the reason for using them is obvious.

Having seen what these machines can do and why we use them, let’s find
out the steps that are necessary to have them assist us in solving a problem.
1.3 The Five Steps in Problem Solving

There are five steps which must be followed when a computer is used to
help solve a problem. They are:

1. Define the problem

1.3 Getting Started 3

2. Develop a procedure for solving the problem.

3. Translate this procedure into a language the computer
understands.

4. Enter the instructions and data into the computer.
5. Tell the computer to execute the instructions.

Note that the computer isn’t even involved until step 4! In fact, only in step 5
does it operate without human intervention. We shall look briefly at what is in
involved in each of these steps and then study an example.

Step 1: Define the Problem. Unless the problem is well-defined, there is no
sense even thinking about using a computer to help solve it. The people who
get paid the highest salaries in the computing business are those who are
trying to answer the question “What, precisely, is it that we want to use the
computer to do?” Glib answers such as “do inventory control” or "type form
letters” are no good. The problem must be well-defined. Before you write any
program, ask yourself “"Do I know exactly what the problem is?”

Step 2: Develop a procedure for solving the problem. A word which means "a
procedure for solving the problem” is algorithm. An algorithm takes the form
of a sequence of instructions which, if followed by a moron, will solve the
problem. Most algorithms in this book are relatively simple.

Because an algorithm processes numbers and characters it is also
necessary to describe the data (the objects manipulated by the instructions).

Step 3: Translate the procedure and data descriptions into a language the
computer understands. The result of this process is called a computer program.
There are literally hundreds of languages which computers can "understand”.
The programming language described in this book is called Pascal in honor of
the sixteenth century Swiss mathematician by that name. It was originally
invented to teach the principles of computer programming. Because it is so
simple and so powerful, it has rapidly become used for all kinds of
programming problems. Like natural languages, programming languages tend
to grow (verbs, nouns and sentence structures are added to the language).
Pascal is no exception.

Nonetheless, computers can really only understand one language. It
consists of long strings of ones and zeros called bits. A bit is a Binary diglT,
namely a zero or a one. All programming languages are translated into strings
of bits by a special program called a compiler. More will be said about the
compiler in Step 5.

Step 4: Enter the program into the computer. Once the algorithm and data
descriptions have been written in a programming language, you must enter the
computer program and data into the computer. This is done in one of two
ways. The lines in the program can be punched into cards, one card per line.

