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FOREWORD

This volume contains 26 contributed papers, and an invited paper, that were
presented at the Twelfth ACM SIGACT-SIGMOD-SIGART Symposium on Prin-
ciples of Database Systems (PODS). In addition, three tutorials were held at the
Symposium. The Symposium was held May 25-27, 1993 in Washington, D.C., in
conjunction with the 1993 ACM SIGMOD International Conference on Manage-
ment of Data.

The contributed papers were selected out of 115 submissions at a meeting of
the Program Committee on February 7th, 1993. The papers generally represent
preliminary reports of continuing research; they have been read by the Program
Committee, but not formally refereed. It is anticipated that most of them will
appear in more polished form in scientific journals.

The Program Committee would like to thank all those who submitted extended
abstracts for consideration, those colleagues who helped in the evaluation, and
the sponsoring organizations for their assistance and support. Special thanks to
Shamim Naqvi, and to Bellcore, Morristown, N.J. for hosting the Program Com-
mittee meeting.

Catriel Beeri
Program Committee Chairman
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A Call to Order

David Maier and Bennet Vance
Department of Computer Science and Engineering
Oregon Graduate Institute of Science & Technology

19600 N.W. von Neumann Dr.

Beaverton, OR 97006-1999

Abstract

Scientific applications are infrequent users of commercial
database management systems. We feel that a key reason is
they do not offer good support for ordered data structures,
such as multidimensional arrays, that are needed for natural
representation of many scientific data types. In this paper,
we lay out issues in database support of ordered structures,
consider possible approaches along with their advantages
and shortcomings, and direct the reader to the wide variety
of prior work outside the data management field that might
be successfully applied in this endeavor.

1 Introduction

There has been much work of late in moving databases
and persistent programming languages beyond the
simple data models of current database systems (that is,
sets of tuples). Among the extensions are allowing free
composition of type constructors, support for abstract
data types, and incorporation of new “collection” or
“bulk” types such as bags and lists. However, much
of this work seems motivated by what generalizes well
from sets, what matches current language semantics,
what is theoretically tractable or pleasing, and other
“aesthetic” considerations.

We would suggest that this work should be motivated
more by needs and looking at data-intensive applica-
tions where database management support is lacking.
Successful data models have done so in the past. Rela-
tional databases, and other record-based systems, took
impetus from the needs of business data processing.

Permission to copy without fee all or part of this material is
- granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
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Object-oriented databases have been greatly influenced
by the modeling and access requirements of computer-
aided design and engineering.

It appears that the the domain of scientific computing
1s underserved by database technology currently. Scien-
tific applications mostly code their I/O directly, or use
code libraries that provide mappings of program struc-
tures to and from files. One can speculate why they have
not availed themselves of existing database management
systems. Several possible reasons come to mind. One is
that the immense sizes of some scientific datasets stress
current DBMS’s beyond their operational limits. An-
other may be that the common access patterns do not
match those to which current systems have been tuned.
Much scientific data is write-once or append-only. There
is often a need for fast loads and stores to and from large
parallel machines. Scientific applications do not often
follow the model of many short interactions typical of
transaction processing. A further problem may be that
some databases do not have convenient interfaces from
languages frequently used for scientific programming, in
particular FORTRAN. Also, the data models provided
with existing DBMS’s are not always a good target to
which to map the data types that appear in scientific
computations.

It is this last problem that motivates this paper.
We claim the database community has largely ignored
support for “ordered” data structures, such as lists,
multidimensional arrays, and graphs, that are needed
for natural and efficient representations for scientific
datatypes such as biochemical sequences, time series,
signals, matrices and images. We think the lack of
support for ordered data structures may be the key
reason that scientific programming has largely ignored



database systems.

In this paper we discuss issues in supporting ordered
data structures at the various levels in a database sys-
tem, with a particular eye toward extending query pro-
cessing to include such structures. We cover data mod-
els and type systems, languages, algebras, optimiza-
tion, representation, evaluation and the application pro-
gramming interface (API). Our data structure of choice
for examples will be multidimensional arrays, as they
are widely used to implement scientific data types—
matrices, discrete spaces, images, finite element grids—
and are poorly supported by existing DBMSs. We do
not intend that these are the only ordered structures of
interest. An important issue is what a sufficient set of
constructors would be in a database system, in terms
of being able to construct reasonable implementations
of a wide range of scientific data types. Also, while our
work in database support for scientific computing is our
original motivation for considering ordered structures,
we believe they will have wide utility for engineering,
statistical and financial applications.

Our intent is to suggest avenues of investigation,
rather than to dictate final solutions. We apologize in
advance if we display ignorance of some relevant piece
of work. We would much appreciate learning of other
approaches and solutions to the issues we outline.

2 The Problem

It is useful and valuable when a database system
understands your favorite data type. There is then a
natural mapping of your enterprise into its data model,
there are succinct and powerful operators to apply to the
data, there is support for auxiliary access structures for
the types, and the database can exploit its knowledge
of the types in query optimization and evaluation. For
example, in a record-processing application, a relational
database supplies a model that is a good match to the
data, a language in which many common operations
on files of records are easily expressed, automatic
maintenance of index structures and optimizers that
make use of statistics, access paths and algorithm costs
to develop reasonable execution plans.

But consider what happens when the database does
not understand your favorite type. To use the database,
you end up with some unnatural encoding of your type

into the data model of the database. Operations of
interest may be inexpressible or difficult to express
in the data manipulation language (DML), the index
structures are unlikely to support the access patterns
you are interested in, and hence the query processor
will be of little value. Consider representing DNA- or
protein-sequence data, where a common operation is
pattern searching, using a relational database. One
could break a sequence into fixed-length chunks and
embed it in string fields of a relation. Or, one could
have a tuple for each base pair or amino acid in
the sequence, and assign explicit position numbers.
However, in neither case will an SQL-like language
be very expressive for pattern search, especially if the
patterns involve wild cards that can span multiple
positions. Even if a particular pattern is expressible,
the query processing technology is poorly matched to
pattern search. The basic scans over relations are
element at a time rather than “window at a time.”
To do a pattern search, one would likely end up
reconstructing the sequence in memory and writing the
search routines in a general-purpose language.

Or consider a database of atmospheric measurements,
giving temperature and barometric pressure at a given
altitude for various combinations of date, time, latitude
and longitude. Suppose we want to compute the
covariance of temperature and pressure at a given
altitude in certain area and time interval. Suppose
further that our favorite statistical package wants a pair
of parallel vectors of values as input. We can easily
enough represent our data values as tuples in a relation

atmo(TEMP PRES ALT DATE TIME LAT LONG)

and certainly SQL is apt for selecting and projecting
down this relation to the particular subset of interest,
call it atmoTP(TEMP PRES). But now what? We
need two vectors. If we do further projections to get
atmoT(TEMP) and atmoP(PRES), we are not guaranteed
that their order will stay consistent, even if we are
careful not to lose duplicates.  Furthermore, the
application programming interface to the database will
probably require us to explicitly iterate over the results
with cursors, rather than being able to deposit the
results directly into an array. Once again, we end up
coding part of the query by hand.



In both these examples, the potential database user
is left with the unpleasant decision whether the explicit
encoding and manipulation of the data is worth the
other advantages of the DBMS, such as concurrency
control and recovery. The way out of this quandary
seems obvious to us—we want databases that support
the appropriate data types directly. Of course, an imme-
diate question is what data types to support. There are
obviously too many scientific datatypes (matrices, time
series, finite element grids, genetic sequences, maps, im-
ages, taxonomies) and operations (matrix algebra, do-
main transforms, filtering, relaxation methods, pattern
searching, coordinate translation, interpolation) to in-
corporate them all into a data model and language. In-
stead, we endorse an approach of having a database with
support for user-defined types [Mai91] and providing a
small collection of bulk-type constructors and associated
operators for defining the implementations (representa-
tion and methods) of those types.

It is a significant research question in itself as
to what is a suitable collection of constructors and
operators. However, we are convinced that whatever
the collection of constructors, it should include one

or more bulk types!

that provide some kind of order
on their elements—Ilist, vector (one-dimensional array),
array, tree, graph—because so many scientific types
embody some kind of order. Part of this prevalence of
order surely arises because of the dimensional nature of
the data—it models physical systems with spatial and
temporal extents. Some if it is due perhaps to the kind
of mathematical formulations used in the processing
of this data, such as linear algebra approximation

techniques to differential equations.

We also observe that existing DBMSs provide at best
rudimentary support for ordered data types. Network
and hierarchical systems support lists of records, but
this capability cannot rightfully be construed as an or-
dered bulk type, as there are no functions to operate on
such a list as a unit, apart perhaps from sort. Some re-
lational systems have extensions for array-valued fields,

but they are generally restricted to be arrays of scalars,

1By bulk type, we mean one where the instances of the type
are not bounded in size by the size of the type definitions. Sets
and lists are common examples of bulk types; scalar and tuple
types are not bulk types.

and, again, the functions available are limited to such
things as component access. Object-oriented databases
fare somewhat better, often containing some kind of list
or vector constructor that is freely composable with it-
self and other constructors. However, such structures
play a second-class role in query processing. OODB
query languages are generally expressive of only set-like
processing on instances of these types, and auxiliary ac-
cess paths and query optimizations, if available, follow
from the equivalent capabilities on sets.

So the bad news is that our database models, lan-
guages, algebras, optimizers and evaluation techniques
are inadequate to support ordered types in database
management systems. The good news is that there
is large body of research—recent and not-so-recent—
that suggests directions and techniques to apply to this
shortfall. We will point to work we think is relevant,
some of it outside the database area. We encourage
others to venture afield to find other sources, so we do
not reinvent known techniques.

3 Data Models and Type Systems

Given that we want support for multidimensional arrays
(and other ordered structures), the question occurs
whether we need direct support or can adequately
support them with other types. Two examples of the
latter option come immediately to mind. One is as a
relation with the array indexes as auxiliary attributes.
For example, one might use the relation arr(1 J vaL)
for a two-dimensional array. Another is as a nested
list or vector structure, e.g., List[List [A]]. Neither
is likely to be as time and space efficient as direct
support in general. The relation representation might
be space efficient for sparse arrays, but for dense arrays
there is a significant space penalty for storing the 1
and J indexes explicitly. Also, there is no way to
declare to the database that the 1 and J attributes range
through consecutive values, and hence the database
cannot exploit this property. Some operators, such
as transpose and inner and outer products, are easily
expressible with such a representation, and perhaps
admit efficient query plans. Others, such as applying
a local filter, involve multi-way joins to express and are
unlikely to be evaluated as efficiently as with a direct
representation. Also, the relational representation does



not work well for nested composition of the array
constructor, that is, arrays whose elements are other
collection structures. The nested list and nested vector
representations will accommodate composition and are
more space efficient, but nevertheless present problems.
They do not necessarily enforce that an array must
be rectangular. They also dictate an access order,
and possibly introduce indirection on access [NA93,
Nik91]. Consider a filtering operation that involves the
immediate neighbors of each array cell. In a direct
representation, the addresses of the neighbors can be
calculated from the address of the cell. With the nested
structure, locating some neighbors may mean traversing
down from the root of the structure. Again there are
some operations that are easy to express and fast in this
representation, and some that are difficult. Extracting
a row is easy, extracting a column less so. Transpose is a
bit messy. To judge the aptness of such a representation
for matrix multiplication, see Backus’s expression of it
in FP [BacT78].

The nested representation also creates problems with
physical database design. Scientific programmers have
long known a variety of secondary storage mappings
of multidimensional arrays to optimize data movement
for certain calculations, such as tiling and striping
[BP87, Bel88]. But a tiled physical representation (or a
striping across the inner dimension), cannot be specified
as a composition of physical formats for the inner and
outer lists in a nested representation, as it cuts across
the inner structures.

It is certainly good to have the possibility of the
relation or nested list representation of arrays—they
may be the best implementations in certain cases. But
we believe a specific array constructor is needed to
cover the range of access patterns well. If we agree
on the need for a multidimensional array type that the
database understands, the next set of questions comes in
determining exactly what an array should be, in terms
of its type, constructors and basic operations.

Clearly, arrays with different element types should
themselves be of different types, if we want static
typechecking of array access. Should an array type
include arrays of more than one wvalence (number of
dimensions) as in APL, or should different valences

imply different types? For a given valence and element

type, is there one array type (as in FORTRAN) or one
for each array size (as in Pascal)? The advantage of
more inclusive types is that one can write expressions
and functions that are polymorphic over a larger class
of arrays. For example, in APL the dyadic § operator
can be used as a generalized transpose on arrays of
any valence, where other languages require a separate
operator for each valence. The flip side is that the more
restrictive types can check more conditions statically.
With sizes as part of the type, one could statically check
argument conformance on operators such as matrix
addition or multiplication. If arrays of multiple valences
are in a single type, then arguments that deal with
bounds or indexes will have to be of type List[Int],
necessitating a runtime check for conformance of the list
length and the array valence, or some kind of coercion
on the dimensionality of the array. It is not yet clear
to us what the right tradeoff is between static checking
and general operations.

Consider now array constructors. It is not a given
for us that languages that include an array type always
contain an array constructor, that is, an operator that
creates an array value. It might be more accurate
to characterize such languages as containing “arrayed
variables” rather than an array type. FORTRAN is an
example. In such languages, one declares array variables
that support indexed access, but one cannot have an
array value apart from such a variable. Operations are
on individual array elements rather than on arrays as
single values themselves.

In a database, one expects to have a great number of
data items, and it should not be required to give them
all names. Such a requirement would interfere with
composability of constructors. For example, under such
arequirement one could not have a set of arrays, because
there would not be a variable name corresponding to
each array.

For languages, real and proposed, with true array
constructors, there are a variety of those constructors.
By a constructor, we mean an operator that produces
an array from “simpler” types. Some examples follow.

e Array and vector literals, as in APL, New S
[BCW88], Id and Smalltalk.

e Constructors that convert a scalar to a singleton



array of the required valence.

e Iterations, such as the “iota” operator in APL
and intervals in New S that generate a vector of
consecutive values in a range.

e Constructors that replicate a scalar or array of a
given size and valence to form an array with greater
size or valence.

e Array formers that take a list of index-value pairs,
as in Haskell [Yal91].

e Id provides a constructor for forming an array given
a list of bounds and a “filling function.” We talk in
more detail about such a constructor below.

Also, many functional, applicative and logic lan-
guages have constructors that create an ordered struc-
ture from smaller structures of the same type. “Cons”
lists as in LISP, Prolog and Standard ML are the ob-
vious example. The SVP model [PSV92] provides a
“concat” constructor for lists. Wise [Wis87] discusses
a quad-tree constructor for multidimensional arrays,
which uses 2Y-way trees to build arrays of valence v.
One would also want operators that form arrays from
other bulk types, such as sets.

Within these kinds of constructors, there are further
variations. Do the constructors apply only to scalar
element types, or can they apply to other structured
types? APL arrays have only scalar elements, APL2
(IBM82] supports arrays of arrays. New S allows arrays
with elements of arbitrary type. Another property is
whether an array is mutable. With “arrayed variables,”
there is arbitrary update of existing elements. Some
file packages for array storage, such as netCDF [RD90],
allow updates that extend the array along one (pre-
determined) dimension. The arrays of Id might appear
to be mutable, but they actually have single-assignment
semantics.

It may be that the most common constructors for
database use are ones that take data from external
sources, such as programming language data structures,
operating system files or over a network. Unlike rela-
tions that are built up a tuple at a time, and retrieved
into an application in that manner via cursors, our (ad-
mittedly limited) examination of scientific applications

indicates that often an array will be constructed in its
entirety in a single transaction. This consideration is
likely important for designing recovery support and the
APIL

We have been investigating a constructor, similar
to the “filling function” constructor of Id, that takes
integer bounds in each dimension, plus a function
defined over the cross product of the index ranges
yielding values from the element type for the array.
(Several interesting research efforts have exploited the
duality of array as data structure versus array as
finite function: “functionalizing” arraysin APL [GO8T],
treating an array as a materialization of a function in
Id [NA93] and work on array comprehensions that we
treat in the next section.)

Our array constructor might more precisely be de-
scribed as a family of constructors, one for each dimen-
sionality. Distinguishing the constructors for arrays of
different dimensionalities makes for more readable no-
tation. Let us assume that each dimension of an array
is indexed by integers from 0 to some value m, so an
index range can be defined with a single integer giving
the length of that domain (that is, m + 1 for a range
0 to m). Then, for example, a constructor Arr2 for
two-dimensional arrays would have the signature

Arr2:Int x Int x (Int x Int — T') — array(T].

The two arguments of type Int represent the index
ranges of the array to be constructed, and the function
argument (of type Int x Int — T) determines the
contents of the array: if an array is constructed using
Arr2 and function argument f, the (¢, j)th element of
the array will be f(¢, 7). For example,

Arr2(2,2,\(,j) asreal(2*1i+ j))
would construct the array
0.0 1.0
2.0 3.0

For database applications, the filling function will
generally not be purely computational; it will likely
involve access to stored data. For example,

Arr2(50, 100, A(i, j) BI[5, j, i+ 20))



would select a 2-dimensional slice from the 3-dimensional
array B, transpose it, and take a subset of the columns.
Note that the form of this constructor suggests possible
alternative implementations, such as eager evaluation,
lazy evaluation and lazy evaluation with memoization.
We will return to this notation in the section on lan-
guages.

An important point in choosing an array constructor
for a data model is that constructors for a collection
type generally influence the form of structural recursions
available on instances of that collection type. For
example, one gets different forms of recursion on sets
depending on whether one uses an Insert constructor
or a Union constructor, and different conditions to check
to guarantee the well-definedness of results.

We believe that in analyzing ordered data structures,
it is useful to examine their “topology,” that is, what is
the neighborhood of a given element. Vector elements
have one or two neighbors; two-dimensional array
elements have neighborhoods of 2, 3 or 4 elements.
One could also categorize structures by whether the
shapes of neighborhoods are fixed across the structure,
or vary from element to element. Vectors, arrays and
binary trees are examples with fixed neighborhoods,
while multiway trees, graphs and grids have variable
neighborhoods. It is a wild speculation that there may
be interesting results on the efficiency of encoding one
ordered structure into another ordered structure with a
substantially different topology. Another classification
of collection types has been proposed by Sipelstein and
Blelloch [SB90] as unordered, linearly ordered, grid
ordered and key ordered.

As for basic operations, there will obviously be some
form of access to individual elements of an array,
and probably generalizations of this subscripting to
include ranges of indices along various dimensions and
The New S
language contains several forms of subscripting. APL

other selections on the basis of index.

and APL2 are certainly other starting points for basic
operations. From the point of view of databases and
query optimization, we are most interested in operations
that encapsulate iterations, and we deal with this issue
more in the section on algebras.

A final point in this section is whether multidimen-
sional array is the right data structure. At the begin-

ning of the section, we dealt with some of the problems
arising if multidimensional arrays are constructed out
of single-dimensional ordered structures. But it may be
that there are more general data structures of which ar-
rays are a special case. Some possibilities along these
lines are the maps of Atkinson et al. [ART90], shapes in
Booster [PS90] and other forms that generalize arrays
with non-integer indices or non-uniform index ranges.
It is a legitimate question whether one of these types is
better suited to support scientific data types. What are
the issues to consider? A more general structure will
permit more direct implementations of a wider range
of data types. On the other hand, they require more
general implementation techniques themselves. Can the
cases where there is uniformity be effectively detected
and exploited?

4 Languages

Certainly a good portion of the success of relational
systems is the existence of calculus-based languages to
express queries without explicitly stating an access plan.
One would like a similar declarative query formalism
for dealing with ordered data structures. The language

Query
formalisms based on functional languages may work

need not be logic-based to be declarative.
equally well. The key element is that expressions
deal with bulk type instances as units rather than
specifying explicit loops over the elements. There are
some conflicting desiderata here. ~We expect there
to be multiple bulk types supported by database
systems. To keep the language simple, one would
like to have common syntax that applies to all types.
However, one also wants to have forms that recognize
the particular properties of different bulk types and
that allow natural expression of accesses to those
types.
programming languages are a poor starting point for

a data manipulation language precisely because they

Another observation is that many existing

do not treat bulk types as units, but instead require
explicit iteration. Consider the difficulties in applying
transformations to optimize or vectorize a language such
as FORTRAN, where all array operations show up as
explicit looping constructs.

There have been several lines of investigation for

language forms that are general over several bulk



types, such as sets, bags and lists. There is work on
comprehensions [Tri91, Wad90, WT91] in the functional
programming community that shows that notation
similar to set formers can be defined over any type
whose algebraic structure is a quad, so called because
it includes four operators for creating instances of the
type. A comprehension has the form [E | Q], where
FE is an expression and @ is a qualifier composed of
generators and filters that give bindings to and restrict
the variables in E. For example, if L is a list of
objects describing the mass, volume and length of a
series of biological samples, we could form the list of
densities of all samples over 3 centimeters long with the
comprehension

[mass(s)/volume(s) | s — L;length(s) > 3.0]

In this example, the phrase s — L is a generator; it
brings the variable s into scope and binds it successively
to each of the values in L. The phrase length(s) >
3.0 is a filter; for each binding of s, the filter is
evaluated, and if the result is false, that binding is
discarded.
list of all values mass(s)/volume(s) obtained with
bindings of s that the generator produced and the

The result of the comprehension is the

filter did not discard. In more complicated examples,
a single comprehension may contain several generators
and several filters; a comprehension with generators
for multiple variables can express cross products, and
interspersing those generators with filters makes it
possible to express subsets of cross products efficiently
(i.e., without constructing the entire product space).
The comprehension approach offers several advan-
tages in addition to notational convenience and expres-
siveness. One is integrating other language features
with queries over bulk types, in contrast to embedded
SQL, in which selection predicates may not use con-
structs of the host language. There is also a uniform
translation from comprehensions to operations over the
quad. Further, there are generic optimizations both for
the comprehension form and in the quad translation.
However, while comprehensions give syntactic similar-
ity to queries of different bulk types and some of their
optimizations, they do not deal with queries involving
several different bulk types or optimizations that can be
made there. Also, the generic optimizations are neces-

sarily ones that apply to all quad structures, and hence
do not exploit special properties of a type, such as order
or lack of duplicates. A further point is that it is not
clear that multidimensional arrays can be cast into this
comprehension formalism in a satisfactory manner.
There are recent languages, such as Haskell and Id
that do provide a comprehension syntax for multidimen-
sional arrays, but that notation does not look exactly
like the comprehensions described above, as it mentions
the indices explicitly. An array comprehension consists
of a number of indez = value expressions, with associ-
ated qualifications on the index and value expression.
For example, in Id, if B is a 100 by 100 array of reals,
we can form a comprehension for the array that has the

diagonal elements of B and zeroes elsewhere as

{matrix ((1, 100), (1, 100)) of
[i,7] = B[i,7] || i — 1 to 100 |
[i,i]=0.0]i—1t099, j —i+1to 100 |
[i,i]= 0.0 i —2to 100, j — 1 to i — 1}

(This region-by-region definition bears strong similarity
to the view notation in Booster [PS90], which can serve
both to decompose an array into subregions or compose
an array from component regions.) Both Id and Haskell
also have forms for aggregating arrays in various ways,
such as to form histograms.

A limitation this form of array comprehension has
relative to the set and list comprehensions mentioned
earlier is that, in general, one cannot tell statically if
the expression is well formed. That is, do the regions
of definition partition the index space, with no overlap
or gaps. If there are any locations with multiple
value definitions, one can either raise an exception
at runtime or give some combining function for the
different values. Neither option seems that pleasant for
database querying.

The fill-function constructor we gave in the last
section also is fairly expressive for array manipulation.
For example, array transpose is

transpose(A) =
let (m,n) = bounds2(A)
in Arr2(n, m, A(7, ) Alj, 1])

and matrix multiplication of A and B (suppressing some
checking for equal bounds) is



mult(A, B) =
let (m,n’) = bounds2(A)
and (m',n) = bounds2(B)
in Arr2(m,n,
A(7, 7) inner_prod(row(A4, i), col(B,j)))

Here row and col extract rows and columns of two-

dimensional arrays. For example

row(M, i) =
let (m,n) = bounds2(M)
in Arri(n, A(j) M[i, j])

The inner product is defined by

inner_prod(A, B) =
let n = bounds1(A)
and Z = zip(A, B)
in sum(Arri(n, A(z)(*)(Z[1])))

Here (*) is scalar multiplication as a prefix operator on
pairs of scalars, sum computes the sum of the elements of
an array, and zip converts a pair of vectors to a vector
of pairs:

zip(A, B) =
let n = boundsi(A)
in Arri(n, A(z) (A[Z], B[1]))

(Again, there should be a check for equal bounds on A
and B.)

Another class of query formulations is based on struc-
tural recursion [BTBN91, BTS91]. In this approach,
bulk types are viewed as built up from repeated appli-
cation of a constructor, and the basic query form is a
recursive functional over such structures. The form of
the functional of course depends on what the construc-
tor is. For example, with a union constructor, Breazu-
Tannen et al. [BTBN91] propose the query form from
type Set[a] to type 8 by

h(0) = e
h({z}) = f(=)
h(S1US2) = u(h(S1),h(S2))

where e:3, f:a — f and u:fx 8 — (. The authors show
that this form is quite expressive, capturing first-order
relational queries, and can give direct expression to
transitive closure and grouping queries. An interesting

property of this form is that it works for a range of
bulk types, replacing set union by bag union or list
concatenation or whatever [BTS91]. There is an issue
about the properties that e, f and u must satisfy for
the functional to be well defined. For example, for sets,
u and e must form a commutative, idempotent monoid.

Parker et al. [PSV92] take a similar tack in the SVP
language, basing their definitions and query forms on
a generic collection-combining constructor that can be
interpreted as set union, concatenation, and so forth.
They also provide a recursive functional as the basic
query form, though their functional provides for a
restructuring step as part of each recursive application.

If structural recursion is going to be the basis for
DMLs on ordered structures, its proponents must
demonstrate that it can accommodate multidimensional
arrays. The first question is what array constructor
fits with their model, and does it give rise to natural
expression of the operations one wants to express
on arrays. Wise’s [Wis87] quad-tree constructor fits
the model, and he has shown that various matrix
manipulations and the DFT are naturally expressed
against that constructor. An interesting question is
if his formulations translate easily into the structural-
recursion query forms.

In closing this section on languages, we also refer
our readers to the analysis by Sipelstein and Blelloch
[SB90] on collection-oriented languages. They consider
existing languages that provide operations on collections
as units, with particular attention to ordered collection
types and parallel implementations.

5 Algebras

Relational algebra seems to provide a good conceptual
basis for query transformation, planning and evaluation.
In extending query processing to ordered structures,
one naturally wonders if an algebraic formulation
exists for representing operations on ordered structures.
Obviously, one can define a wide variety of operators
on ordered types and thus construct an algebra. The
question is whether it will be an appropriate algebra for
query processing.

What are the criteria for appropriateness? We claim
that the relational algebra works because it has a small

number of operators, that those operators encapsulate



