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PREFACE

Matrix algebra is vitally important as a tool in such subjects as chemistry,
economics, engineering, mathematics, physics, and scientific computation.
Important problems in these fields can be reduced to problems in matrix
algebra, which can be solved accurately on high-speed computers. For this
reason, students often get a first course in linear algebra fairly early in their
curriculum. A casualty of this is that geometric aspects of linear algebra often
get little attention. This is unfortunate, for much of linear algebra owes its
existence to the geometric intuitions of its creators, and many of its methods
can best be understood in connection with their geometric interpretations.

This book, Matrix Algebra, presents computational linear algebra within
a geometric context. The general theme is that of matrix manipulation, which
keeps things at a concrete and computational level. Geometric phenomena
are illustrated by diagrams that complement and simplify the discussion and
help the reader gain a deeper, more conceptual grasp of the subject. In this
way, the book can be comprehensive as well as accessible.

Although this book can be used as the text for a two-semester course
covering all sections, it is intended primarily for use in a one-semester course,
wherein Chapters 1 and 2 are covered rapidly and many or all sections
marked with asterisks (*) are omitted. This gives the instructor flexibility to
add topics appropriate for the particular course, and it makes the book more
useful to students for reference purposes later on. Some sample courses are
outlined in the Instructor’s Manual.
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Preface

Since a true understanding of linear algebra requires using it from the
outset to solve problems, many problems are included to make up a kind of
“laboratory,” or “proving ground,” for developing problem-solving skills.
The Instructor’s Manual provides solutions to all problems. The Instructor’s
Manual also provides a detailed Student’s Manual, which the instructor can
make available to students through any copy center.

The book is divided into three parts:

Part 1 (Chapter 1) is a prologue, or preview in the microcosm of the plane,
of what is to come. As such, it should be covered rapidly.

Part 2 (Chapters 2—4) is concerned with vector spaces and linear trans-
formations. To set the stage, Chapter 2 introduces Cartesian n-space.
This can be done quickly. Chapter 3 is about linear transformations of
Cartesian n-space and should be covered more slowly. The remainder of
Part 2, Chapter 4, is concerned with general n-dimensional vector spaces
and their linear transformations. In this general setting, bases are
discussed and the effect of a change of basis on the matrix of a linear
transformation is described. Chapter 4 ends by showing how problems
in this general context can be reduced to concrete problems about
Cartesian n-space. Specifically, it explains the fundamental principle that
problems stated in terms of linear transformations of a vector space of
dimension n can be translated by an isomorphism to problems stated in
terms of matrices viewed as linear transformations of F".

Part 3 (Chapters 5—7) then goes on to develop the linear algebra and
geometry of Cartesian n-space, including the theory of quadratic forms.

Appendix A (“Sets, Elements, and Functions”), Appendix B (“Real Numbers”),
and Appendix C (“Complex Numbers”) are included for students to consult
or review as needed.

Each chapter and appendix ends with references to other works that
provide background or illustrate some of the richness and diversity of
linear algebra.

We take this opportunity to thank the many people who have read the
manuscript and made useful comments and contributions. We thank Bill Blair,
Dan Britten, and Gene Klotz for their many and varied suggestions, which
led to very substantial improvements. We also thank Bob Pirtle, Phyllis
Niklas, and Linda Thompson for their excellent editorial help in bringing this
book into being. Finally, we thank Molly Thornton and Reese Thornton of
Folium for their intricate and creative preparation of the many supporting
illustrations.
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1.1

CHAPTER

1

THE GEOMETRY AND
LINEAR ALGEBRA OF
THE CARTESIAN PLANE

The geometry of the plane is concerned with points, distance, and angle, as
well as with rigid motions (congruences), which move lines, circles, etc. without
disturbing their shape. Such motions are, simply, those mappings from the
plane to itself that preserve distance and angle.

When coordinate axes are introduced in the plane, the result is the
Cartesian plane, where points are denoted by pairs of numbers. Using these
numbers, the geometry of the Cartesian plane can be developed quantita-
tively. The purpose of this chapter is to develop this geometry with the help

of vectors. Along the way we preview, in the microcosm of the plane, what
is to follow in the remaining chapters.

THE CARTESIAN PLANE

The Cartesian plane is a plane equipped with two coordinate axes, the hori-
zontal x,-axis and the vertical x,-axis. The x,-axis is a copy of the real line
R (Appendix B), and the x,-axis is a copy of the x,-axis obtained by rotating
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