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This book presents the proceedings of a one-day conference in Combinatorics
and Graph Theory held at The Open University, England, on 12 May 1978.  The
first nine talks presented here were given at the conference, and cover a
wide variety of topics ranging from topological graph theory and block
designs to latin rectangles and polymer chemistry. The tenth author,
Christopher Wright, had been invited to present his talk on traffic-flow
problems, but was unable to do so due to other commitments; he has kindly
allowed us to publish the talk he would have given. In all cases, the
authors were chosen for their ability to combine interesting expository
material in the areas concerned with an account of recent research and new
results in these areas.

One of the special features of the conference was a Poster Session, and
one of the presentations at this session appears here. I should like to
thank my colleagues John Mason and Roger Duke for organizing the Poster

Session, and to thank them and Roy Nelson for helping with the academic side

of the programme. On the administrative side, I should like to express my
thanks to everyone involved, and in particular to Marion Aldred, Jennifer
Goldrei, Joan Street and Mike Bandle. Most of all, I should like to thank
Frances Thomas for her excellent typing of the entire manuscript.

Finally, this volume is dedicated to the memory of Derek Waller, who was
prevented by illness from attending the conference. Three weeks later he
died of leukaemia, leaving a wife and three small children. His untimely

death is a sad loss for British Combinatorics.

The Open University R Robin J. Wilson

January 1979
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L D Andersen and A J W Hilton

Generalized latin rectangles

1. INTRODUCTION

A latin square of size n x n based on the symbols I, ..., nis ann X n
matrix in which each cell is filled by exactly one symbol in such a way
that each symbol occurs exactly once in each row and exactly once in each

column. Instead of the n positive integers 1, ..., n any set of n symbols

can be used.

A latin square can be thought of as a finite quasigroup:

a*x = b and y*a = b are uniquely solvable for each pair (a,b) of elements
of Q. Thus the multiplication table of a quasigroup of order n is precisely

a latin square of size n x n (with a headline and a sideline).

gives an example.

Q,* | 2 3
| 2 4 |
~ gielal8 g
3 3 | 4
4 | 2 >
Latin square
\ Figure 1

\

Latin squares and quasigroups are extensively treated in [3], which
contains several references also to works concerned with the application of

latin squares in the design of experiments (the classic in this field is

L.

example
1*4 =3
4x| = |

a quasigroup

(Q, *) is a set Q with a binary operation * such that the equations
Yy op q
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intriguing combinatorial problem concerning latin squares is that

embedding. There are no end of variations on this theme. We mention here
~tw6 results.
H. J. Ryser [10] proved that if A is an r x s matrix where each cell
~ contains one of the symbols 1, ..., n such that no symbol occurs more than
once in any row or column, then A can be embedded in (found as a submatrix

of) some latin square of size n X n on symbols 1, ..., n if and only if

each symbol occurs at least r + s — n times in A.

A. Cruse [2] proved that if A is an r x r matrix where each cell contains
one of the symbols 1, ..., n such that no symbol occurs more than once in
any row or column and such that if cell (i,j) is occupied by the symbol k
then so is cell(j,i), then A can be embedded in a symmetric latin square of

size n x n on symbols 1, ..., n if and only if each symbol occurs at least

2r - n times in A and at least r different symbols occur a number of times
congruent to n modulo 2. Other embedding theorems for quasigroups can be
found in [9].

This paper is concerned with the following generalization of latin
squares:

A (p, q, X)-latin rectangle of size r X s on symbols 1, ..., n is an

r X s matrix in which each cell is filled by exactly x symbols in such a
way that each symbol occurs at most p times in each row and at most q

times in each column (p, q, X, r, s and n are positive integers).

I 2 4 ! 4
2 3 4 25 I2
o |
2 | | a4 2
4 3 2 D 4
A (2,2,2)-latin rectangle A (2,2,3)-latin square ‘
of size 2x3 on symbols of size 2x2 on symbols L
1, 2,54 1y 2¢ Fy ity D :

Figure 2




A (p, q, x)-latin rectangle in which each symbol occurs e:
in each row and exactly q times in each columnm is called exact.
The x symbols in a cell of a (p, q, x)-latin rectangle need not be

if they are distinct for each cell the rectangle is said to bé

‘distinct;
without repetition. Note also that a (p, p, x)-latin square may be

szggetric.

2 | |
3 2 S5
| 5 | 2 | 3 |
2 4 2 4 2 3 2
3 | 3 | | | 2
4 2 4 2 3 2 3
An exact (2,1,2)-latin An exact symmetric (2,2,2)—latin
rectangle A on symbols square B on symbols
1, 2, 3, 4 without 1,2, 3, 4.
repetition
Figure 3

A (p, p, 1)-square is a frequency square (F-square) with frequency
F-squares are treated in [8], to which we refer

ector (D, Dy sves Dls

the reader for further references. Here we investigate (p, q, X)-latin

rectangles from other points of view.
In Section 5 we generalize the theorems of Ryser and Cruse by giving
necessary and sufficient conditions for the embedding of (p, q, X)-latin
rectangles, with or without repetition, symmetric or possibly unsymmetric.
Sections 3 and 4 contain construction and decomposition theorems, and
we apply the results and methods to questions on quasigroups and on equit-
able edge-colourings of graphs, defined in the next section. :
Many of the results stated here have quite long proofs. Most of the

theorems given (but not all) can be found with proofs in [1] and will be

T




published elsewhere.

We wish to thank Professor Trevor Evans for a helpful discussion.

2. EQUITABLE AND BALANCED EDGE-COLOURINGS OF GRAPHS

Equitable edge-colourings of graphs relate to the work of this paper in two
ways: a result about them is used in several of our proofs, and on the
other hand our results can be stated as results about such colourings.

An edge-colouring of a graph G with colours 1, ..., k is a partition of
the edges and loops of G into k mutually disjoint subsets c;, ..., ) (note
that any partition will do, so that an edge-colouring need not be proper -
that is, having no colour present more than once at any vertex). An edge or
loop has colour i if it belongs to c;.

Given an edge-colouring, we let ci(v) be the set of edges and loops on
vertex v of colour i, and ci(u,v) be the set of edges joining vertices u and
v (the set of loops on u, if u = v) of colour 1i.

An edge-colouring is equitable if, for all vertices v,

(a) max <l

nax || ;)| = ;)]
1,]

It is balanced if it is equitable and for each pair of vertices u, v:

(b) max S A

o [ ;)| - ch(u,V)I

Thus an edge-colouring is equitable if the colours occur as uniformly
as possible at each vertex, and it is balanced if in addition the colours
are shared as evenly as possible on each multiple edge.

An exact (p, q, x)-latin rectangle A corresponds to an equitable edge-
colouring of a bipartite graph with a vertex for each row and a vertex for
each column, where each row vertex CH (corresponding to the i-th row) is
joined to each column vertex Yj (corresponding to the j—th column) by x

edges being coloured with the symbols in the (i,j)-th cell of A, where the

number of edges of any given colour joining Py to Y. is equal to the
number of occurremces of the corresponding symbol in the cell €i,j).7 For
example, from the rectangle A of Figure 3 we get the graph of Figure 4 with

edge-colouring indicated. Since A is without repetition, the colouring is

i




balanced.

Figure 4

In the same way an exact symmetric (p, P, x)-latin square corresponds to
an equitable edge-colouring of a complete graph with loops and multiple
edges. We shall not go into details, but just remark that several of the
following results can be seen in this light, although we only state one
such result (Theorem 9 in Section 4).

The notion of equitable and balanced edge-colourings was introduced by
D. de Werra, and he also proved the following important result ([4] - [61).

We give a short proof of our own.

Theorem 1. For each k 2 1, any bipartite graph has a balanced edge-

colouring with k colours.
Proof. Colour the edges of the graph in any way such that (b)-is
satisfied. The condition only affects each multiple edge by itself, '
so this is clearly possible. We then modify the colouring to make (a) be

fulfilled without violating (b). Suppose that at some vertex v,

e lci(v)l T lcj(v)l >/4’

1,]

and suppose that the maximum is attained for colours | and 2. We can




assume that |c1(v)| > |e,(v)| + 1. Let P be a maximal chain
N0, Vis V2, co0n Yy such that the edges are coloured alternately 1 and 2
(the edge joining v, and v, having colour 1), and such that

|c1(vi, v, )| = Icz(vi, vi+1)| + 1 when i is even,

1]

[cz(vi, ¥, |- lcl(vi, vi+’)| + 1 when i is odd, and P uses only one edge

from eachl;JItiple edge. Now h# 0, because v has some neighbour v, for
which Icl(v, v1)| = |c2(v, vl)l + 1, since |c1(v)| > |c2(V)| 1 Xlso

Vi # Vo because if e vy then j is even (the graph is bipartite), i.e.
both colours occur the same number of times in total on the multiple edges
incident with v, used so far, so the chain can be continued because
Icl(v)| > |c2(v)| + 1. Interchanging the two colours | and 2 on the chain
P clearly does not violate (b), and it reduces the number of pairs of
colours for which “ ci(v)| & |cj(v)|‘ was maximal (greater than 1) by at

least 1. We only have to check that

max [| g | = leg 1|

1]
is not increased. Repeated application of the argument then proves the
theorem. But if h is even the maximality of P implies that the colour 2
occurs at least once more than the colour | at % which implies the
required result, and a similar argument holds if h is odd. This proves

Theorem 1. [

It is not true in general that any graphhas an equitable edge-colouring

with k colours for all k.

3. EXISTENCE AND CONSTRUCTION OF EXACT (p, q, X)-LATIN RECTANGLES

An exact (p, q, x)-latin rectangle on xt symbols has pxt occurrences in

each row, so a row must contain pt cells; similarly a column contains qt
cells, so the rectangle has size qt X pt.

Theorem 2. Let p, q, X be positive ingggers and let t be a rational
number such that pt, qt, xt are positive integers. Then there exists an
exact (p, q, x)-latin rectangle on xt symbols and an exact symmetric

(p, p» X)-latin square on xt symbols. If t 2 1, both can be taken to be

without repetition. [

:



A simple method to obtain exact (p> qs X)=
symmetric if p = q and without repetition if t 2 1 is e cy
placing the symbols exemplified in Figure 5. The rectangle A of

also of this type.

There are several ways of getting generalized latin rectangles from
others. Some are rather trivial, like placing several rectangles on top

of or next to each other. The following is more interesting, yet simple.

I 4 7 3 6 5
2 5 | 4 6 p=3
3 6 2 5 4 7| i-3
4 e 3 6 2 | bl
5 | 4 q 2 gk
6 2 5 | 7 3
>
Figure 5

Figure 6 provides an example.

456

2 4. 54186

Identify | and 4,
2and 5, 3and 6.

e

=23

1352 L2

g3 3

Figure 6

An exact (2,1,3)-latin
rectangle A on 1, 2, 3,
i 3, 6.

An exact (4,2,3)-latin
rectangle B on 1, 2, 3.



In brief, let m, n be positive integers and A an exact (p, q, x)-latin

rectangle on 1, ..., mn. Identify symbols i and j whenever i = j (mod m).
Then an exact (np, nq, x)-latin rectangle B on 1, ..., m is obtained. B

is called the modulo m reduction of A. So in Figure 6, B is the modulo 3

reduction of A.

This process has a converse as stated in the next theorem.

Theorem 3. Let B be an exact (np, nq, x)-latin rectangle on 1, ..., m.
Then

(i) B is the modulo m reduction of some exact (p, q, x)-latin rectangle A
on k. ies N

(ii) if no symbol occurs more than n times in any cell of B then A can be

taken to be without repetition. [J

Since we go from B to A by splitting each symbol into n symbols, (ii) of
Theorem 3 is best possible.

The theorem does not hold for symmetric squares — that is, we cannot be
sure that A can be chosen to be a symmetric square even if B is (the square

B of Figure 3 is a counterexample); we have only the following:
Theorem 4. Let B be an exact symmetric (2np, 2np, x)-latin square on
symbols 1, ..., m. Then B is the modulo m reduction of some exact symmetric

€2p, 2p, X)-latin square A on I, ..., m. [

In the next section we consider another way of obtaining (p,-q, x)-1latin

rectangles from others.

o
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4. MERGING OF ADJACENT CELLS

| 2 | 5 | 2 2 ! 3

s s e R el e f e e

23|31 | ]2]3]2]|"|An exact (3,2,1)-latin
rectangle A of

| 3 2 3 2 3 I | 3 | size 6 x 9

3 | | o) 3 | 2 2 2

o PO e e ke

erase lines in blocks

| 2 | 3 | 2 2 3 3

2 2 3 | 2 | 3 3 |

288080 iER 201 3 R b AN exact (638 6)-1at1n
square B of

I S S I I 3 | size 3 x 3

3 | | 3 3 | 2 2 2

3 | 2 2 3 3 | | 2

Figure 7

Figure 7 gives an example of the following process:
Let A be an exact (p, q, x)-latin rectangle of size mr x ns for positive
integers m, n, r, s. Merge (identify) cells (i, j;) and (i,, jz) wheneve
[_illm-l = I—:. /m| and |—_11/n-| = [_JZ/n-] (where [z]| denotes the least integer
not smaller than z). Then an exact (mp, nq, mnx)-latin rectangle B of
size r x s is obtained. B is called the (m, n)-merger of A. For exampla
in Figure 7, B is the (2, 3)-merger of A. ‘ :

In the following, we shall use the term "merging of cells" about a

slightly more general situation as well.




We have a converse theorem:

Theorem 5. Let B be an exact (mp, nq, mnx)-latin rectangle. Then
(i) B is the (m, n)-merger of some exact (p, q, x)-latin rectangle A;
(ii) if no symbol occurs more than mn times in any cell of B then A can be

taken to be without repetition. [

To go from B to A we subdivide each cell of B into mn cells, so (ii) is
best possible.

We illustrate the proof of Theorem 5 by proving a related theorem about
quasigroups. Let (Q,*) be a quasigroup. Suppose we have two partitionms
of the set Q, Q = A1 U... UA =B U...uU B, the Ai's being mutually
disjoint, likewise the Bj's. Form an r x s matrix M, where cell (i, j)
contains each a*b with a € Ai’ b e Bj’ counting repetitions. Then cell

(i, j) contains [Ai|°lBj| elements. We call M the set-multiplication table

for (Q,*) corresponding to the two partitions. It is easy to see that row
i of M contains each element of Q IAi| times, and column j each element
lBjI times.

The next theorem shows that if we write down any table with these proper-
ties, then it is the set-multiplication table for some pair of partitions of
some quasigroup. In other words, we can postulate any set-multiplication
table and be sure that there is a quasigroup satisfying it

We define an SM-matrix on o elements to be any matrix (Say r x s) where
there are positive integers p(i) associated with each row and Y(j) with
each column such that

¥ s

e= ¥ ptik= 7 x(3),
i=1 j=1

each cell (i, j) contains p(i)y(j) elements, and each element occurs p(i)

times in row i and y(j) times in column j.

Theorem 6. Any SM-matrix on o elements is the set-multiplication table for
some quasigroup on these elements.

Proof. Let A be an SM-matrix of size r X s on elements ®;, ...,C; . We
show that if r # o then A can be obtained from an (r + 1) x s SM-matrix by
merging the cells of two rows (such that any pair of cells in the same

column are identified). Repeated application of this argument first on the

0




rows, and then on the columns, shows that A can be obtained by "gener:

merging" from a o x ¢ SM-matrix B. But B is just a latin square, a uasi
] Yl

group, and A is easily seen to be a set-multiplication table for it.

If r # o then some p(i) is at least 2. Assume without loss of generality

v

that p(1) 2. We want to split the first row of A into new rows.

Construct a bipartite graph G with vertex classes {Vl’ 5 oty VS} and
{al, Sy ua}, where v, is joined to oy by k edges if and only if the symbol
a. occurs k times in cell (1,i). Then 4 has degree p(1)y(i) and aj has

degree p(1). Give G an equitable edge-colouring with p(1) colours. Let c,
be some colour class. Then each vy has exactly y(i) edges of colour 1 on
it, and each o, is on exactly one such edge. Split row ! of A into two rows
1' and 1" where a symbol aj goes in row 1' in cell (1', i) if and only if
there is an edge of colour 1 joining Ve and aj, and symbol aj goes in row 1"
in cell (1", i) as many times as there are edges joining Vi and aj of colour
different from 1. Let p(1') =1, p(1") =p(1) = 1. It is easy to see that

we have obtained an SM-matrix of size (r + 1) x s. This proves Theorem 6. U

Corresponding to (i) of Theorem 5 we have the following result about

symmetric squares.

Theorem 7. Let B be an exact symmetric (mp, mp, m?x)-latin square. Then B
is the (m, m)-merger of some exact symmetric (p, p, x)-latin square A if and
only if at most mx distinct symbols occur an odd number of times in any given

diagonal cell of B. [l

The condition is due to the fact that a symbol occurring an odd number of
times in a diagonal cell of B must occur in one of the corresponding diagonal
cells of A. If we want to know when A can be taken to be without repetitionm,
we get a rather complicated necessary and sufficient condition; we omit the
result here.

We have the following related result about quasigroups.

Theorem 8. Any symmetric SM-matrix on ¢ elements with at most p(i) distinct
elements occurring an odd number of times in the i-th diagonal cell is the

set-multiplication table for some commutative quasigroup on these elements.[]



