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Preface

The methods for the nonlinear analysis of physical and mechanical systems developed
for use on modern digital computers provide means for accurate analysis of large-
scale systems under dynamic loading conditions. These methods are based on the
concept of replacing the actual system by an equivalent model made up from discrete
bodies having known elastic and inertia properties. The actual systems, in fact, form
multibody systems consisting of interconnected rigid and deformable bodies, each
of which may undergo large translational and rotational displacements. Examples
of physical and mechanical systems that can be modeled as multibody systems are
machines, mechanisms, vehicles, robotic manipulators, and space structures. Clearly,
these systems consist of a set of interconnected bodies which may be rigid or de-
formable. Furthermore, the bodies may undergo large relative translational and rota-
tional displacements. The dynamic equations that govern the motion of these systems
are highly nonlinear which in most cases cannot be solved analytically in a closed
form. One must resort to the numerical solution of the resulting dynamic equations.

The aim of this text, which is based on lectures that I have given during the past
twelve years, is to provide an introduction to the subject of multibody mechanics in
a form suitable for senior undergraduate and graduate students. The initial notes for
the text were developed for two first-year graduate courses introduced and offered
at the University of Illinois at Chicago. These courses were developed to emphasize
both the general methodology of the nonlinear dynamic analysis of multibody systems
and its actual implementation on the high-speed digital computer. This was prompted
by the necessity to deal with complex problems arising in modern engineering and
science. In this text, an attempt has been made to provide the rational development of
the methods from their foundations and develop the techniques in clearly understand-
able stages. By understanding the basis of each step, readers can apply the method to
their own problems.

The material covered in this text comprises an introductory chapter on the subjects
of kinematics and dynamics of rigid and deformable bodies. In this chapter some
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xii PREFACE

background materials and a few fundamental ideas are presented. In Chapter 2, the
kinematics of the body reference is discussed and the transformation matrices that
define the orientation of this body reference are developed. Alternate forms of the
transformation matrix are presented. The material presented in this chapter is es-
sential for understanding the dynamic motion of both rigid and deformable bodies.
Analytical techniques for deriving the system differential and algebraic equations of
motion of a multibody system consisting of rigid bodies are discussed in Chapter 3.
In Chapter 4, an introduction to the theory of elasticity is presented. The material
covered in this chapter is essential for understanding the dynamics of deformable
bodies that undergo large translational and rotational displacements. In Chapter 5,
the equations of motion of deformable multibody systems in which the reference mo-
tion and elastic deformation are coupled are derived using classical approximation
methods. In Chapters 6 and 7, two finite element formulations are presented. Both
formulations lead to exact modeling of the rigid body inertia and lead to zero strains
under an arbitrary rigid body motion. The first formulation discussed in Chapter 6,
which is based on the concept of the intermediate element coordinate system, uses
the definition of the coordinates used in the conventional finite element method. A
conceptually different finite element formulation that can be used in the large defor-
mation analysis of multibody systems is presented in Chapter 7. In this chapter, the
absolute nodal coordinate formulation in which no infinitesimal or finite rotations are
used as element coordinates is introduced.

I am grateful to many teachers, colleagues, and students who have contributed to
my education in this field. I owe a particular debt of gratitude to Dr. R.A. Wehage and
Dr. M.M. Nigm for their advice, encouragement, and assistance at various stages of my
educational career. Their work in the areas of computational mechanics and vibration
theory stimulated my early interest in the subject of nonlinear dynamics. Several
chapters of this book have been read, corrected, and improved by many of my graduate
students. I would like to acknowledge the collaboration with my students Drs. Om
Agrawal, E. Mokhtar Bakr, Ipek Basdogan, Michael Brown, Bilin Chang, Che-Wei
Chang, Koroosh Changizi, Da-Chih Chen, Jui-Sheng Chen, Jin-Hwan Choi, Hanaa
El-Absy, Marian Gofron, Wei-Hsin Gau, Wei-Cheng Hsu, Kuo-Hsing Hwang, Yunn-
Lin Hwang, Yehia Khulief, John Kremer, Haichiang Lee, Jalil Rismantab-Sany, and
Mohammad Sarwar, and my current students Marcello Berzeri, Marcello Campanelli,
Andrew Christensen, Hussien Hussien, and Refaat Yakoub. Their work contributed
significantly to the development of the material presented in this book. Special thanks
are due to Ms. Denise Burt for the excellent job in typing most of the manuscript.
Finally, I thank my family for their patience and encouragement during the time of
preparation of this text.

Chicago, Illinois Ahmed Shabana
July 1997
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1 INTRODUCTION

1.1 MULTIBODY SYSTEMS

The primary purpose of this book is to develop methods for the dynamic analysis
of multibody systems that consist of interconnected rigid and deformable compo-
nents. In that sense, the objective may be considered as a generalization of methods
of structural and rigid body analysis. Many mechanical and structural systems such
as vehicles, space structures, robotics, mechanisms, and aircraft consist of intercon-
nected components that undergo large translational and rotational displacements.
Figure 1 shows examples of such systems that can be modeled as multibody systems.
In general, a multibody system is defined to be a collection of subsystems called
bodies, components, or substructures. The motion of the subsystems is kinematically
constrained because of different types of joints, and each subsystem or component
may undergo large translations and rotational displacements.

Basic to any presentation of multibody mechanics is the understanding of the
motion of subsystems (bodies or components). The motion of material bodies formed
the subject of some of the earliest researches pursued in three different fields, namely,
rigid body mechanics, structural mechanics, and continuum mechanics. The term
rigid body implies that the deformation of the body under consideration is assumed
small such that the body deformation has no effect on the gross body motion. Hence,
for a rigid body, the distance between any two of its particles remains constant at all
times and all configurations. The motion of a rigid body in space can be completely
described by using six generalized coordinates. However, the resulting mathematical
model in general is highly nonlinear because of the large body rotation. On the other
hand, the term structural mechanics has come into wide use to denote the branch of
study in which the deformation is the main concern. Large body rotations are not
allowed, thus resulting in inertia-invariant structures. In many applications, however,
a large number of elastic coordinates have to be included in the mathematical model
in order to accurately describe the body deformation. From the study of these two

1



2 INTRODUCTION

Figure 1.1 Mechanical and structural systems.

subjects, rigid body and structural mechanics, there has evolved the vast field known
as continuum mechanics, wherein the general body motion is considered, resulting
in a mathematical model that has the disadvantages of the previous cases, mainly
nonlinearity and large dimensionality. This constitutes many computational problems
that will be addressed in subsequent chapters.

The research in the area of multibody dynamics has been motivated by growing
interest in the simulation and design of large-scale systems of interconnected bodies
that undergo large angular rotations. The analysis and design of such systems require
the simultaneous solution of hundreds or thousands of first-order differential equa-
tions, a task that could not be accomplished a few decades ago before the development
of electronic computers. Most of the work done in this area is based on analyzing
rigid multibody systems, and many computer-based techniques that solve complex
rigid body systems have been developed.

In recent years, however, greater emphasis has been placed on the design of
high-speed, lightweight, precision systems. Generally these systems incorporate var-
ious types of driving, sensing, and controlling devices working together to achieve
specified performance requirements under different loading conditions. The design
and performance analysis of such systems can be greatly enhanced through transient
dynamic simulations, provided all significant effects can be incorporated into the
mathematical model. The need for a better design, in addition to the fact that many
mechanical and structural systems operate in hostile environments, has demanded the
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Control
device

Figure 1.2 Multibody systems.

inclusion of many factors that have been ignored in the past. Systems such as engines,
robotics, machine tools, and space structures may operate at high speeds and in very
high temperature environments. The neglect of the deformation effect, for example,
when these systems are analyzed leads to a mathematical model that poorly represents
the actual system.

Consider, for instance, the Peaucellier mechanism shown in Fig. 1(b), which is
designed to generate a straight-line path. The geometry of this mechanism is such
that BC = BP = EC = EP and AB = AE. Points A, C, and P should always lie
on a straight line passing through A. The mechanism always satisfies the condition
AC x AP = ¢, where c is aconstant called the inversion constant. Incase AD = CD,
point C must trace a circular arc and point P should follow an exact straight line.
However, this will not be the case when the deformation of the links is considered. If
the flexibility of links has to be considered in this specific example, the mechanism can
be modeled as a multibody system consisting of interconnected rigid and deformable
components, each of which may undergo finite rotations. The connectivity between
different components of this mechanism can be described by using revolute joints
(turning pairs). This mechanism and other examples shown in Fig. 1, which have
different numbers of bodies and different types of mechanical joints, are examples
of mechanical and structural systems that can be viewed as a multibody system
shown in the abstract drawing in Fig. 2. In this book, computer-based techﬁiques for
the dynamic analysis of general multibody systems containing interconnected sets of
rigid and deformable bodies will be developed. To this end, methods for the kinematics
and dynamics of rigid and deformable bodies that experience large translational and
rotational displacements will be presented in the following chapters. In the following
sections of this chapter, however, some of the basic concepts that will be subject of
detailed analysis in the chapters that follow are briefly discussed.

1.2 REFERENCE FRAMES

The configuration of a multibody system can be described using measurable quan-
tities such as displacements, velocities, and accelerations. These are vector quantities
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Figure 1.3 Reference frame.

that have to be measured with respect to a proper frame of reference or coordinate
system. In this text, the term frame of reference, which can be represented by three
orthogonal axes that are rigidly connected at a point called the origin of this refer-
ence, will be frequently used. Figure 3 shows a frame of reference that consists of the
three orthogonal axes X, X3, and X3. A vector u in this coordinate system can be
defined by three components u,, i3, and u3, along the orthogonal axes X;, X;, and
X, respectively. The vector u can then be written in terms of its components as

T
u=[u u usl
or as
u = uyd; + uzip + usis

where iy, iy, and i3 are unit vectors along the orthogonal axes X;, X,, and X3, respec-
tively.

Generally, in dealing with multibody systems two types of coordinate systems
are required. The first is a coordinate system that is fixed in time and represents a
unique standard for all bodies in the system. This coordinate system will be referred to
as global, or inertial frame of reference. In addition to this inertial frame of reference,
we assign a body reference to each component in the system. This body reference
translates and rotates with the body; therefore, its location and orientation with respect
to the inertial frame change with time. Figure 4 shows a typical body, denoted as body
i in the multibody system. The coordinate system X;X;Xj; is the global inertial frame
of reference, and the coordinate system X"l ‘2 '3 is the body coordinate system. Let i;,
iz, and i3 be unit vectors along the axes X{, X;, and X3, respectively, and let i}, i, and
i, be unit vectors along the body axes X!, X}, and X4, respectively. The unit vectors
ij, i, and i3 are fixed in time; that is, they have constant magnitude and direction,
while the unit vectors I}, i, and i have changeable orientations. A vector u' defined
in the body coordinate system can be written as

i =i

_ misi =iz
W =il + iyl + sl

where i\, @}, and i} are the components of the vector u' in the local body coordinate
system. The same vector u' can be expressed in terms of its components in the global
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X,

X,

Figure 1.4 Body coordinate system.

coordinate system as
lli = uilil + uiziz + ugig,

where u!, u}, and u¥, are the components of the vector u’ in the global coordinate
system. We have, therefore, given two different representations for the same vector
u’, one in terms of the body coordinates and the other in terms of global coordinates.
Since it is easier to define the vector in terms of the local body coordinates, it is useful
to have relationships between the local and global components. Such relationships can
be obtained by developing the transformation between the local and global coordinate

systems. For instance, consider the planar motion of the body shown in Fig. 5. The
coordinate system X X represents the inertial frame and X} X, is the body coordinate

0

u

o

Figure 1.5 Planar motion.



6 INTRODUCTION

system. Let i; and i, be unit vectors along the X, and X, axes, respectively, and let i'i
and i be unit vectors along the body axes X| and X5, respectively. The orientation of
the body coordinate system with respect to the global frame of reference is defined
by the angle 6. Since i} is a unit vector, its component along the X axis is cos 6',
while its component along the X, axis is sin 6'. One can then write the unit vector i}
in the global coordinate system as

i, = cosé'i; +sind'i
Similarly, the unit vector i, is given by
i, = —sin#'i; +cos &'y

The vector u' is defined in the body coordinate system as

where @} and @}, are the components of the vector u' in the body coordinate system.
Using the expressions for i} and i, one gets

u' = i@\ (cos8iy + sin 0'iy) + ah(—sin6'i; + cos6'iy)

() cos®' — iy sin@')iy + (| sin@' + @t} cos 6’ )i

= uliy + ubi
where /| and ), are the components of the vector u' defined in the global coordinate
system and given by

These two equations which provide algebraic relationships between the local and
global components in the planar analysis can be expressed in a matrix form as

ui = Ail_li

; i T i i =il - , ,
where w' = [u} wy] , W =[] &3], and A’ is the planar transformation matrix
defined as

Al | cos Bf' —sin Q’
sinf' cos@’
In Chapter 2 we will study the spatial kinematics and develop the spatial transforma-
tion matrix and study its important properties.

1.3 PARTICLE MECHANICS

Dynamics in general is the science of studying the motion of particles or bodies.
The subject of dynamics can be divided into two major branches, kinematics and
kinetics. In kinematic analysis we study the motion regardless of the forces that cause
it, while kinetics deals with the motion and forces that produce it. Therefore, in
kinematics attention is focused on the geometric aspects of motion. The objective
is, then, to determine the positions, velocities, and accelerations of the system under
investigation. In order to understand the dynamics of multibody systems containing
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rigid and deformable bodies, it is important to understand first the body dynamics.
We start with a brief discussion on the dynamics of particles that form the rigid and
deformable bodies.

Particle Kinematics A particle is assumed to have no dimensions and ac-
cordingly can be treated as a point in a three-dimensional space. Therefore, in studying
the kinematics of particles, we are concerned primarily with the translation of a point
with respect to a selected frame of reference. The position of the particle can then be
defined using three coordinates. Figure 6 shows a particle p in a three-dimensional
space. The position vector of this particle can be written as

r = xii; + x2ip + xaly (1.1)

where iy, i, and i3 are unit vectors along the X, X;, and X; axes and xy, x7, and x3
are the Cartesian coordinates of the particle.

The velocity of the particle is defined to be the time derivative of the position
vector. If we assume that the axes X, X,, and X; are fixed in time, the unit vectors
iy, ip, and i3 have a constant magnitude and direction. The velocity vector v of the
particle can be written as

d . C o
vV=rF= E(l‘):hl] + X720y 4+ X303 (1.2)
where () denotes differentiation with respect to time and %, X;, and X3 are the
Cartesian components of the velocity vector.
The acceleration of the particle is defined to be the time derivative of the velocity
vector, that is,

d e ue s
a= d_t-(V) = X1} + X2l + X3l (1.3)
where a is the acceleration vector and X, ¥;, and ¥; are the Cartesian components of
the acceleration vector. Using vector notation, the position vector of the particle in
terms of the Cartesian coordinates can be written as

T
r=[x; x x3]

Figure 1.6 Position vector of the particle p.
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=

Figure 1.7 Cylindrical coordinates.

while the velocity and acceleration vectors are given by

“Va e a ar
=0 % &l
dv d2r_[d2x, d’x; d2x3]T

dr__[dxl dx; dx3:|'r

a=

dr  drr | de?  dr  dr?
=[% % ]

The set of coordinates that can be used to define the particle position is not unique.
In addition to the Cartesian representation, other sets of coordinates can be used for
the same purpose. In Fig. 7, the position of particle p can be defined using the three
cylindrical coordinates, r, ¢, and z, while in Fig. 8, the particle position is identified
using the spherical coordinates r, 8, and ¢. In many situations, however, it is useful to
obtain kinematic relationships between different sets of coordinates. For instance, if
we consider the planar motion of a particle p in a circular path as shown in Fig. 9, the
position vector of the particle can be written in the fixed coordinate system X, X; as

r=[xn xl"=xi +xi

where x) and x; are the coordinates of the particle and i, and i, are unit vectors along
the fixed axes X, and X, respectively. In terms of the polar coordinates r and 4, the

x1 A

t A

X,

Figure 1.8 Spherical coordinates.



