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FOREWORD

This is the third published volume of the proceedings of the Israel Seminar on Geometric
Aspects of Functional Analysis. The first volume (1983-84) was published privately by Tel
Aviv University and the second volume (1985-86) is volume 1267 of the Springer Lecture Notes
in Mathematics. This volume covers the 1986-87 session of the seminar. As in previous years
the seminar was partially supported by the Israel Mathematical Union.

The large majority of the papers in this volume are original research papers. As should
be clear from the contents of this volume and the titles of the actual lectures delivered at the
seminar, there was last year a strong emphasis on classical finite-dimensional convexity theory
and its connection with Banach space theory. In recent years, it has become evident that the
notions and results of the local theory of Banach spaces are useful in solving classical questions
in convexity theory. We hope that the present volume will help in clarifying this point.

The papers in this volume are arranged in accordance with the order of their presentation
at the seminar. The last four papers are based on talks delivered at conferences in the summer
of 1987.

In preparing this volume we received invaluable help in editing and typing from Mrs. M.
Hercberg. We are very grateful to her.

Joram Lindenstrauss, Vitali Milman

AN
19861987
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THE INVARIANT SUBSPACE PROBLEM ON A CLASS OF
NONREFLEXIVE BANACH SPACES, 1

C.J. Read

Department of Pure Mathematics
and Mathematical Statistics
Cambridge University
Cambridge, England

Abstract

In [1] we gave a fairly short proof that there is an operator on the space ¢,
without nontrivial invariant subspaces, and we conjectured that the same might be
true of any space £, @ W where W is a separable Banach space. This conjecture
turns out to be true, and by proving it here we give the first example of a reasonably
large class of Banach spaces for which the solution to the invariant subspace problem is
known. This continues the sequence of counter-examples which began on an unknown
Banach space (Enflo [2], Read [4], Beauzamy (3], (simplification of [2])), proceeded to
the space £; (Read [5,1]) and here continues with the case of any separable Banach
space containing ¢; as a complemented subspace. No counter-example is known to

the author for a Banach space which does not contain £;.

1. Introduction

Here and elsewhere in this paper, we follow as closely as possible the style of the proof
in [1]. The proof here is a modified version of [1], changed as little as we could in order to
incorporate the Banach ¢; & W, rather than ¢;. Throughout this paper, the underlying field

may be either IR or C.

1.1. Let (X,| -|) denote the Banach space £; & W, where W is a given separable Banach
space. We quote the following result of R. Ovsepian and A. Pelcynski ([6]).



Let us choose, once and for all, such a biorthogonal system (z;), (z}) for the given Banach
space W. We may assume that ||z;|| = 1 for all + (1.1.1), and if we take the liberty of renorming

our space W with the equivalent norm
o o]
ll=]l" = inf {20]ly]| + Y |2} (2)| : y + 2 = =} ,
1

we may assume that ||z}|| = 1 also (1.1.2). Let (g;)$2, be the unit vector basis of £;, and let F
be the dense subspace of X spanned by {z;}U{g;}. The norm of any linear map S : WNF — Z
is then bounded by

IS <118zl (1.1.3)

=1
and indeed the right hand side is an upper bound for the nuclear norm of S.

We may also assume that the norm on X = £; & W is taken in the sense of £;, that is
|z +wllx = [|zlle, + [lw]lw (1.1.4)

for every z € £;, w € W. Then the norm of an operator S : F — Z is bounded by

[eo)
sl < max(ggg ISl , YISzl - (1.1.5)
L

=1

Definition 1.2. Let g = (d;)?2, denote a strictly increasing sequence of positive integers.
This sequence will be involved in most of the rest of our definitions, and it will be required to
increase “sufficiently rapidly” in the following sense.

If P(d) is a proposition depending on the sequence g, we say (just as we did in [4, §1])
that P(d) is true “provided d increases sufficiently rapidly”, if there is a constant ¢ > 0 and
functions f; : IN* - IN (=1,2,3,...) such that the following holds.

If d;y > ¢; and for all + > 1, we have
d; > fi_1(dy,d2,...,di_1)

then P(4d) is true.
So if P(d) is true “provided g increases sufficiently rapidly”, there is a sequence ¢ such

that P(d) is true; and if Py, Ps,..., Pk are a finite collection of propositions, each of which is

k
true provided d increases sufficiently rapidly, then the proposition A P;(d) is true “provided
=1
4 increases sufficiently rapidly”.

Given such a sequence d, let us write a; = d2;—; and b; = da; for each 7 € IN.



1.3. For the sake of convenience, we shall use the notation p.d. to mean ‘provided d

increases sufficiently rapidly’.
1.4. Wedefine ap =1, vg =0, v, = n(an + b,) (n € IV).
1.5. Let |p| denote the sum of the absolute values of the coefficients of the polynomial p.

1.6.  Given the space X with norm as in (1.1.4), with unit vector basis (g;)$2, for ¢;, and
a biorthogonal system (z;),(z;) for W satisfying (1.1.0-2), we define a sequence (f;)%, C X
such that {f;} = {g:} U {z;}, in terms of the sequence d. We define

Iy ifi=a, — 1 for somen € IN ,
fi=1 g ifo<i<a -1,
Ji—n ifa, <1< apy; — 1 for somen € IN .

1.7. If S C {g; : © > 0} we write Il for the norm 1 projection X — lin(S) such that
Ms(w) =0if we W, and

gi if g € S
Ms(g:) =

0, if ¢S

2. Defining some operators on X, given the sequence g

Let the sequence d be given. Certainly we have
O=vy<a;+b =v <2(a2+b2):v2<... ,

so the sets {0}, (vn—1,vn] (n = 1,2,3,...) form a partition of Z*. P.d, we have v,_; < a,
for each n € IN, so each interval (v,_1,vy,] can be partitioned into the disjoint union of the
sets

(vn— 1 nan]

and

(nan, vn]

Moreover, (vn,—1,nay] is the disjoint union of the sets
(va—1,an) [ran,ran—i?vn_.,] (r=1,...,n),

and



Furthermore, (nan,v,] is the disjoint union of the sets
(nan+rbn,(r+1)(an+bn)) (r=0,...,n—1)

and

[r(an+bn),nan+rbn] (r=1,...,n).

So Z™ is (p.d) the disjoint union of all the intervals {0}, (vp—1,as) (n € IN), [ran,ra, +vp_,]
(n € IN, r = 1,...,n), (ra,. + vp—r, (r + l)a,,) n > 2, r = 1,...,n — 1),
(nan + rbn, (1 + r)(an + bs)) (n € N, r =0...n— 1), and [r(an + bn),nan + rbs] (n € IN,
r=1...n).

Bearing this in mind, we make the following definition.

Definition 2.1. Let the sequence d C IN be given. We shall show that, p.d., there is a

unique sequence (e;)$2, C F with the following properties:

(2.1.0) fo=¢eo.

(2.1.1) If integers r,n, satisfy 0 < r < n, ¢ € [0,Vn_s] + ran, we have
fi=an—y(€i—€i—ra,) -

(2.1.2) if integers r,n,7 satisfy 1 <r < n, 1 € (ra,1 + Uy, (r + l)an), (respectively, 1 < n,

1 € (Un—1,an)) then
fi = 2B=I/VET g,

where h = (r + %)an (respectively, h = %a,n).
(2.1.3) If integers r,n,i satisfy 1 < r <n, ¢ € [r(an + bn),na, + rbn], then
fi=ei—bn-eip, .
(2.1.4) If integers r,n, i satisfy 0 < r < n, i € (nan + rby, (r + 1)(an + bs)) then
f; = 2h=9/VEn ¢,
where h = (r + %)bn.
i
Note 2.2. P.4., Definition 2.1 gives f; = ) A;;je; uniquely for each 7 > 0, and since };; is
=0
never zero, this linear relationship is invertible. So the e; exist and are unique, and indeed

lin{e; :0<i<n}=lin{fi:0<i<n}=F, say ,

N N
foralln > 0. Ifz= 3 \ie; € F, we write |z| = Y |-
=0 t=0



Definition 2.3.  For each n > 0, let I, : (Fn,|| - ||) = (Fn,|-|) be the identity map. We

note that if n = ma,, (respectively, n = v,,) for some m € IN, then the norm | - || on F,
depends only on the underlying space W, the value of m, and the elements {a;}™ ,, {b; :"z_ll
(respectively, {a;}™,, {b:}™ ) of the sequence d. So for a given space X, we may choose
functions M; : IN? — IN and M, : IN? — IN such that for all m € IV, and for all 4 such that

definition 2.1 is meaningful, we have

[Tman IV [ ma,, | < Mi(m, am) (2.3.1)

and

[ Tonll VI < Ma(m,byn) (2.3.2)

Definition 2.4. Let Q,, (m > 1) denote the projection F — Fy,,  such that
f] ) 0< ] < may;,
Qm(fj) = fj—ra,.+(r—n+m)a,,. ) j € [oa vn—r] +ra, , 0<n-m<r<n,
0 , otherwise.

Definition 2.5. Let Q%, (m > 1) denote the projection F — F,,,, such that
fi » 0<j<man,
Q?n(f]) = —Qn—r " €j—ra, JE [0, Un—r] tra, , 0<n—-m<r<n.
0 , otherwise.

Definition 2.6. Let P, ,, (m > n > 1) be the operator 7, © Qu, Where Tp 1, : Frng, —

Fmama
e 0<j<(m—-n)am

Tn,m(€5) =
o , (m—-n)ay, <j<map.

Definition 2.7. Let T : F — F be the linear map such that Te; = e;4; (¢ > 0). Also, let I

denote the identity map.

3. Continuity of Q,, and other projections

Lemma 3.1. ||@Q|| < m for all m.

Proof: By (1.1.5),
Qmll < maX(sggllng;H , ZHsz.‘H) (3.1.1)

=1



Now Definition 2.4 gives @, fi = f; (7 < 1) or zero for every 1; so Q@ fi is a vector of norm at

most one. Since {f;} D {gi}, we conclude that

1Qmll < max (1, Y [Qmzill) - (3.1.2)

1=1

But Qmzi = @mfa;—1 = fa;—1 (1 < ¢ < m) or zero (¢ > m)(3.1.3) (by Definition 2.4).

Hence,
[@nll <m.

Lemma 3.2. ||Q%,|| < am for allm, p.d4..
Proof: Again, (1.1.5) gives
oo
Q%I < max (sup IQRaill » 3_11Q5z)) -
2 i=1
Definition 2.5, like Definition 2.4 gives Q2 (z;) = z; (¢ < m) or zero (i > m) (3.2.1), so
1Qmll < max (sup [@%ngill , m) - (3.2.2)
Now {g:} C {f:}, and Q%,(f:) is fi or zero unI;ss 1 € [0,Un—r] +Tan, 0 <n—m < r <n,when
“Q?nf‘” = an—r |[€i-ra, ||
<am-1"|l€i—ra,ll
Samo1- 11, 1 - leimran]
since 1 — ra, < Vpm_1;
<am-1-Mz(m—1,bp_1) by (23.2).

Hence,
”Q(V)n“ S max (a’m—l : Mz(m - l,bm—l)am)

<am p-4 -
Lemma 3.3. P.d, we have ||Pp,m|, ||Tn,m|| < max(a,41,m), and ||QnPp.m| < anyy for all

n<m.

Proof: Using (1.1.5), we observe that (2.6) gives

Pn,m(Ii) = Tn,QO(Ii)

Tn,m(zi) ’ 1<m
0 , t>m
Iy ) IS m
- { (3.3.1)
0 , t>m

hence,



| Pr,m|| < max(sup || Pa,mg:l,m)

< max(sup || Pn,mfill,m) .
Now Py fi = Tn,mQ@mfi and by (2.4), Q. fi is either zero of f; for some 0 < j < ma,,. Thus

0 | P fill < _max llrn,m 51l (3:2)

<mam
But (2.6) and (2.1) give for all 0 < 5 < manm,

—Qm—r " €j—ra,, > JE€ [O,vm—r] +ram, m—n<r<m,

Tn,mfj =
f; or zero, otherwise .

Hence
max [|7n,m fjl| < max(1, sup  am-_r-[lej—ra.|)
j €0, 9nl+ram
r€|m—nym]
< max(l,a, - sup |le]])
1€[0,v,]
< a, - M;y(n,b,) by (2.3.2); (3.3.3)
then

| Pr,m]|| < max (an - Ms(n,by,), m)
< max(apt1,m) p-d..

We note also that since Q,, acts as the identity on the domain of 7, mn, we have ||7,,m| <

I72,mQm|l = || Pr,mll-
(e}
Using (1.1.5) to consider the operator Q, P, ,, we consider first the sum Y_ ||Qn Py, mzi-
i=1
By (3.3.1),

Qnzi , t<m
Qﬂ.IJn.,m-"'-'i=

0 , t>m.

T; , 1<n

0 , t>n, by (3.1.3).
Thus ) ||QnPn,mzi|| = n. Also, by (3.3.2), (3.3.3), (3.1), we have sup||QnPpn,mfi] <
i 1
|@Qn| - max || Pn,mfil| < na,Mz(n,b,). Therefore, (1.1.5) gives
1

”QnPn,m“ < max(su_p ”QnPn,mgi“ ) Z ||QnPn,m$i||)
1 "
< max (na,,Mg(n, bn), n)

< ant1 p-g..



4. Continuity of T

Lemma 4. Let n > 0 be given. The following are true p.d.;
(1) |IT|| £1+ n, indeed HT'Z1 | < 1+mn while T|,, has nuclear norm at most 7.
(2) ||Te+bn(I—QY)|| <1+n foralln € IN.

4.1 Proof of Lemma 4(1).
00
By (1.1.5) it is sufficient to show that “T|t1 || <1+4mn, while Y ||Tz;|| <7 (4.1.1). (4.1.1)
i=1

is easy to prove; by (2.1), (1.6.1) we have

Ty = fagm1 = 207 FOIVE Loy

Tz; = 2(1-5)/Vai . €a, = o(1-%a:)/VaEr (fo+a7l, - fa))

(by (2.1));
|Tzi|| < 4-27 4V
since || f;|| = 1 for all j; then Y ||Tz|| < Y 27 #V® < 5 p.d4. (4.1.2)
1=1 1=1

4
We now examine the behavior of T on ¢;. Let R,S C Z7* be as follows. R = |J R; and
/=0

1=

4
S = | S; where

i=1
Ro = {o},

R, ={rap+vp_r:0<r<n};
Ry ={rap,—1:2<r<n};
R3; ={na, +rb,:1<r<n}

Ry={r(ap,+b,)—1:1<r<n};

S = U ([0’ vn—r) +Ta'n.) )

o<r<n
n>1
oo n—1
Sy = U S2,n where Syp= ( U (ran + vp—r, (r +1)an — 1)) U (vn—1,an — 1)
n=1 r=1
S3 = U [r(a,,1 +b,),na, + rbn] ;
1<r<n
n>1

oo n—1
Si=|J Sam where Sun = |J (nan+rbu,(r +1)(an +b,) — 1) .

n=1 r=0



Note that, p.d., RUS = Z*\{a, —1:n > 1} so for all 7, g; = f; for some j € RUS.
Thus
sup||Tg:f = sup |ITflf . (4.1.3)
i JERUS

We now investigate the right hand side of (4.1.3), considering first those j € S.
If + € S then by Definitions 2.1, 2.7, we have

fix1 , 1€ 8 US;s
Tfi={ 2YVen. finy , 1€ Syn
zl/m'fii-l ) NS Sr,n .

So sup||Tfil| = 2Y/V¥ <147 p.d..

%eﬁnitions 2.7 and 2.1 give the following slightly more elaborate action for T on those f;
with 7 € R (the ‘bad cases’). If 1 € R, then
2(1=38)/Vor . £ i =0€ Ry

Gn_r - (e1fi+1 — €2fvn_,+1) s t =T@n + Vpn_r € Ry, where
€y = 9(1+vn_r—tan_r41)/VBrmrr1 , and

2t —HVEE pcp,
€1 =
9(14+nan—5bn)/Vha ,r=n.

2(1—%0»)/\/ﬁ,<f0+ fi+l) ,t=ra,—1€Ry;,2<r<n

Tf; = Rnssr
€1fis1 = bnafitib, » i = NGn +rb € Ry, where

€2 = 2(na,.+l—§b,.)/\/5: ,
€q,7r<n,
= {
2(Vn+1—%ﬂn+1)/m ,r=n.

L ),

n—r

r—1
o(1=(r+1)an—4bn)/Vhn (Zb{.fi—jbn + b, - (fo +
=0

i=r(a,+b,)—1€ER,.
(4.1.4)
It is not hard to see that, p.d., these values have in common that they are all of norm less
than 7, for any fixed # > 0. So sup ||Tfs|| < n p.4.. But then (4.1.3) gives sup ||Tg;|| <1+17
(4.1.5), and then (1.1.5) gives ® ‘
Il < max (sup I Tadl , 3 IT=i])

<max(1+mn,7)=1+n.



