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Preface

This text has grown out of notes used for lectures in a course entitled Ad-
vanced Statistical Theory at Carnegie Mellon University over several years.
The course (when taught by the author) has attempted to cover, in one
academic year, those topics in estimation, testing, and large sample theory
that are commonly taught to second year graduate students in a math-
ematically rigorous fashion. Most texts at this level fall into one of two
categories. They either ignore the Bayesian point of view altogether or
they cover Bayesian topics almost exclusively. This book covers topics in
both classical' and Bayesian inference in a great deal of generality. My own
point of view is Bayesian, but I believe that students need to learn both
types of theory in order to achieve a fuller appreciation of the subject mat-
ter. Although many comparisons are made between classical and Bayesian
methods, it is not a goal of the text to present a formal comparison of the
two approaches as was done by Barnett (1982). Rather, the goal has been
to prepare Ph.D. students to be able to understand and contribute to the
literature of theoretical statistics with a broader perspective than would be
achieved from a purely Bayesian or a purely classical course.

After a brief review of elementary statistical theory, the coverage of the
subject matter begins with a detailed treatment of parametric statistical
models as motivated by DeFinetti’s representation theorem for exchangeable
random variables (Chapter 1). In addition, Dirichlet processes and other
tailfree processes are presented as examples of infinite-dimensional param-
eters. Chapter 2 introduces sufficient statistics from both Bayesian and
non-Bayesian viewpoints. Exponential families are discussed here because
of the important role sufficiency plays in these models. Also, the concept
of information is introduced together with its relationship to sufficiency.
A representation theorem is given for general distributions based on suffi-
cient statistics. Decision theory is the subject of Chapter 3, which includes
discussions of admissibility and minimaxity. Section 3.3 presents an ax-
iomatic derivation of Bayesian decision theory, including the use of condi-
tional probability. Chapter 4 covers hypothesis testing, including unbiased
tests, P-values, and Bayes factors. We highlight the contrasts between the
traditional “uniformly most powerful” (UMP) approach to testing and de-
cision theoretic approaches (both Bayesian and classical). In particular, we

What 1 call classical inference is called frequentist inference by some other
authors.
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see how the asymmetric treatment of hypotheses and alternatives in the
UMP approach accounts for much of the difference. Point and set estima-
tion are the topics of Chapter 5. This includes unbiased and maximum like-
lihood estimation as well as confidence, prediction, and tolerance sets. We
also introduce robust estimation and the bootstrap. Equivariant decision
rules are covered in Chapter 6. In Section 6.2.2, we debunk the common
misconception of equivariant rules as means for preserving decisions un-
der changes of measurement scale. Large sample theory is the subject of
Chapter 7. This includes asymptotic properties of sample quantiles, maxi-
mum likelihood estimators, robust estimators, and posterior distributions.
The last two chapters cover situations in which the random variables are
not modeled as being exchangeable. Hierarchical models (Chapter 8) are
useful for data arrays. Here, the parameters of the model can be modeled
as exchangeable while the observables are only partially exchangeable. We
introduce the popular computational tool known as Markov chain Monte
Carlo, Gibbs sampling, or successive substitution sampling, which is very
useful for fitting hierarchical models. Some topics in sequential analysis are
presented in Chapter 9. These include classical tests, Bayesian decisions,
confidence sets, and the issue of sampling to a foregone conclusion.

The presentation of material is intended to be very general and very pre-
cise. One of the goals of this book was to be the place where the proofs could
be found for many of those theorems whose proofs were “beyond the scope
of the course” in elementary or intermediate courses. For this reason, it is
useful to rely on measure theoretic probability. Since many students have
not studied measure theory and probability recently or at all, I have in-
cluded appendices on measure theory (Appendix A) and probability theory
(Appendix B).? Even those who have measure theory in their background
can benefit from seeing these topics discussed briefly and working through
some problems. At the beginnings of these two appendices, I have given
overviews of the important definitions and results. These should serve as
reminders for those who already know the material and as groundbreaking
for those who do not. There are, however, some topics covered in Ap-
pendix B that are not part of traditional probability courses. In particular,
there is the material in Section B.3.3 on conditional densities with respect
to nonproduct measures. Also, there is Section B.6, which attempts to use
the ideas of gambling to motivate the mathematical definition of proba-
bility. Since conditional independence and the law of total probability are
so central to Bayesian predictive inference, readers may want to study the
material in Sections B.3.4 and B.3.5 also.

Appendix C lists purely mathematical theorems that are used in the text

?These two appendices contain sufficient detail to serve as the basis for a full-
semester (or more) course in measure and probability. They are included in this
book to make it more self-contained for students who do not have a background
in measure theory.
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without proof, and Appendix D gives a brief summary of the distributions
that are used throughout the text. An index is provided for notation and
abbreviations that are used at a considerable distance from where they are
defined. Throughout the book, I have added footnotes to those results that
are of interest mainly through their value in proving other results. These
footnotes indicate where the results are used explicitly elsewhere in the
book. This is intended as an aid to instructors who wish to select which
results to prove in detail and which to mention only in passing. A single
numbering system is used within each chapter and includes theorems, lem-
mas, definitions, corollaries, propositions, assumptions, examples, tables,
figures, and equations in order to make them easier to locate when needed.

I was reluctant to mark sections to indicate which ones could be skipped
without interrupting the flow of the text because I was afraid that readers
would interpret such markings as signs that the material was not impor-
tant. However, because there may be too much material to cover, especially
if the measure theory and probability appendices are covered, I have de-
cided to mark two different kinds of sections whose material is used at most
sparingly in other parts of the text. Those sections marked with a plus sign
(+) make use of the theory of martingales. A lot of the material in some
of these sections is used in other such sections, but the remainder of the
text is relatively free of martingales. Martingales are particularly useful in
proving limit theorems for conditional probabilities. The remaining sections
that can be skipped or covered out of order without seriously interrupting
the flow of material are marked with an asterisk (*). No such system is
foolproof, however. For example, even though essentially all of the material
dealing with equivariance is isolated in Chapter 6, there is one example in
Chapter 7 and one exercise that make reference to the material. Similarly,
the material from other sections marked with the asterisk may occasion-
ally appear in examples later in the text. But these occurrences should be
inconsequential. Of course, any instructor who feels that equivariance is an
important topic should not be put off by the asterisk. In that same vein,
students really ought to be made aware of what the main theorems in Sec-
tion 3.3 say (Theorems 3.108 and 3.110), even though the section could be
skipped without interrupting the flow of the material.

I would like to thank many people who helped me to write this book or
who read early drafts. Many people have provided corrections and guidance
for clarifying some of the discussions (not to mention corrections to some
proofs). In particular, thanks are due to Chris Andrews, Bogdan Doytchi-
nov, Petros Hadjicostas, Tao Jiang, Rob Kass, Agostino Nobile, Shingo
Oue, and Thomas Short. Morris DeGroot helped me to understand what
is really going on with equivariance. Teddy Seidenfeld introduced me to
the axiomatic foundations of decision theory. Mel Novick introduced me
to the writings of DeFinetti. Persi Diaconis and Bill Strawderman made
valuable suggestions after reading drafts of the book, and those suggestions
are incorporated here. Special thanks go to Larry Wasserman, who taught



from two early drafts of the text and provided invaluable feedback on the
(lack of) clarity in various sections.

As a student at the University of Illinois at Urbana-Champaign, I learned
statistical theory from Stephen Portnoy, Robert Wijsman, and Robert
Bohrer (although some of these people may deny that fact after reading this
book). Many of the proofs and results in this text bear startling resemblance
to my notes taken as a student. Many, in turn, undoubtedly resemble works
recorded in other places. Whenever I have essentially lifted, or cosmetically
modified, or even only been deeply inspired by a published source, I have
cited that source in the text. If results copied from my notes as a student
or produced independently also resemble published results, I can only apol-
ogize for not having taken enough time to seek out the earliest published
reference for every result and proof in the text. Similarly, the problems at
the ends of each chapter have come from many sources. One source used
often was the file of old qualifying exams from the Department of Statistics
at Carnegie Mellon University. These problems, in turn, came from various
sources unknown to me (even the ones I wrote). If I have used a problem
without giving proper credit, please take it as a compliment. Some of the
more challenging problems have been identified with an asterisk (*) after
the problem number. Many of the plots in the text were produced using
The New S Language and S—Plus [see Becker, Chambers, and Wilks (1988)
and StatSci (1992)]. The original text processing was done using IXTEX,
which was written by Lamport (1986) and was based on TgX by Knuth
(1984).

Pittsburgh, Pennsylvania MARK J. SCHERVISH
May 31, 1995

Several corrections needed to be made between the first and second print-
ings of this book. During that time, I created a world-wide web page

http://www.stat.cmu.edu/ nark/advt/

on which readers may find up-to-date lists of any corrections that have
been required. The most significant individual corrections made between
the first and second printings are listed here:

o The discussion of the famous M-estimator on page 314 has been
corrected.

e Theorems 7.108 and 7.116 each needed an additional condition con-
cerning uniform boundedness of the derivatives of the H, and H},
functions on a compact set. Only small changes were made to the
proofs.

e The proofs of Theorems B.83 and B.133 were corrected, and small
changes were made to Example 2.81 and Definition B.137.
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CHAPTER 1

Probability Models

1.1 Background

The purpose of this book is to cover important topics in the theory of statis-
tics in a very thorough and general fashion. In this section, we will briefly
review some of the basic theory of statistics with which many students are
familiar. All that we do here will be repeated in a more precise manner at
the appropriate place in the text.

1.1.1  General Concepts

Most paradigms for statistical inference make at least some use of the fol-
lowing structure. We suppose that some random variables X;,..., X, all
have the same distribution, but we may be unwilling to say what that distri-
bution is. Instead, we create a collection of distributions called a parametric
family and denoted Py. For example, Py might consist of all normal distri-
butions, or just those normal distributions with variance 1, or all binomial
distributions, or all Poisson distributions, and so forth. Each of these cases
has the property that the collection of distributions can be indexed by a
finite-dimensional real quantity, which is commonly called a parameter. For
example, if the parametric family is all normal distributions, then the pa-
rameter can be denoted @ = (M, X), where M stands for the mean and
3 stands for the standard deviation. The set of all possible values of the
parameter is called the parameter space and is often denoted by Q. When
© = 6, the distribution of the observations is denoted by Py. Expected
values are denoted as Eq(-).

We will denote observed data X. It might be that X is a vector of ob-
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servations that are mutually independent and identically distributed (1ID),
or X might be some general quantity. The set of possible values for X is
the sample space and is often denoted as X'. The members Py of the para-
metric family will be distributions over this space X. If X is continuous or
discrete, then densities or probability mass functions' exist. We will denote
the density or mass function for Py by fxg(-|f). For example, if X is a
single random variable with continuous distribution, then

b

If X = (X1....,X,), where the X, are IID each with density (or mass
function) fx,|o(:|¢) when © = 6, then

Ixie@(0) = [T fx.0(il0), (1.1)
i=1
where z = (x1,...,x,). Alter observing the data X1 = z4,..., X, = z,,,

the function in (1.1), as a function of @ for fixed =, is called the likelihood
Sfunction, denoted by L(#). Section 1.3 is devoted to a motivation of the
above structure based on the concept of exchangeability and DeFinetti’s
representation theorem 1.49. Exchangeability is discussed in detail in Sec-
tion 1.2, and DeFinetti’s theorem is the subject of Section 1.4.

1.1.2 Classical Statistics

Classical inferential techniques include tests of hypotheses, unbiased esti-
mates, maximum likelihood estimates, confidence intervals and many other
things. These will be covered in great detail in the text, but we remind the
reader of a few of them here. Suppose that we are interested in whether or
not the parameter lies in one portion Qg of the parameter space. We could
then set up a hypothesis H : © € Qg with the corresponding alternative
A: O & Q. The simplest sort of test of this hypothesis would be to choose
a subset R C X, and then reject H if z € R is observed. The set R would
be called the rejection region for the test. If z ¢ R, we would say that we
do not reject H. Tests are compared based on their power functions. The
power function of a test with rejection region R is 3(f) = Py(X € R). The
size of a test is supycq,, B(6). Chapter 4 covers hypothesis testing in depth.

Example 1.2. Suppose that X = (X1,...,X,) and the X; are IID with N(6,1)
distribution under Py. The usual size o test of H : @ = 6y versus A : © #* b is

1Using the theory of measures (see Appendix A) we will be able to dispense
with the distinction between densities and probability mass functions. They will
both be special cases of a more general type of “density.”
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to reject H if X € R, where X is the sample average,

R::(—a;&y%j%¢‘l(%)JLJ{%—Fj%@‘I(1—%),«0,

and ® is the standard normal cumulative distribution function (CDF).

The notation and terminology in Chapter 4 are different from the above
because we consider a more general class of tests called randomized tests.
These are special cases of randomized decision rules, which are introduced
in Chapter 3. The following example illustrates the reason that randomized
decisions are introduced.

Example 1.3. Let X ~ Bin(5,0) given © = 6. Suppose that we wish to test
H:© <1/2 versus A : © > 1/2. It might seem that the best test would be
to reject H if X > ¢, where ¢ is chosen to make the test have the desired level.
Unfortunately, only six different levels are available for tests of this form. For
example, if ¢ € [4,5), the test has level 1/32. If ¢ € [3,4), the test has level 3/16,
and so on. If you desire a level such as 0.05, you must use a more complicated
test.

A function of the data which takes values in the parameter space is called
a (point) estimator of ©. Section 5.1 considers point estimation in depth.

Example 1.4. Suppose that X = (X1,...,X,) and the X; are IID with N(6,1)

distribution under Py, then ¢(z) = )" | @:i/n = T takes values in the parameter

space and can be considered an estimator of ©.

Sometimes we wish to estimate a function g of ©. An estimator ¢ of
g(0) is unbiased if Eg[¢(X)] = ¢g(8) for all 8 € Q. An estimator ¢ of © is a
mazimum, likelihood estimator (MLE) if

sup L(0) = L(¢(x)),
0

for all x € X. An estimator ¥ of g(®) is an MLE if ©(X) = g(¢(X)),
where ¢ is an MLE of ©. The reader should verify that the estimator ¢ in
Example 1.4 is both an unbiased estimator and an MLE of ©.

If the parameter © is real-valued, it is common to provide interval es-
timates of ©. If (4, B) is a pair of random variables with 4 < B, and
if

Py(A<0<B) >,

for all 8 € Q, then [A, B] is called a coefficient v confidence ipterval for ©.
Section 5.2 covers the theory of set estimation, which includes confidence
intervals, prediction intervals, and tolerance intervals as special cases.

Example 1.5 (Continuation of Example 1.4). Suppose that X = (X1,...,X,)
and the X; are IID with N(6,1) distribution under Ps, and let

_— C - C
A=X--2, B=X+-%,
Vi T Ve
where ¢ > 0. Then [A, B] is a coefficient 2®(—c) confidence interval for ©, where
® is the standard normal CDF.



