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Preface

Large and complex software systems provide the necessary infrastructure in all
industries today. In order to construct such large systems in a systematic manner,
the focus in the development methodologies has switched in the last two decades
from functional issues to structural issues: both data and functions are encap-
sulated into software units which are integrated into large systems by means of
various techniques supporting reusability and modifiability. This encapsulation
principle is essential to both the object-oriented and the more recent component-
based software engineering paradigms.

Formal methods have been applied successfully to the verification of medium-
sized programs in protocol and hardware design. However, their application to
the development of large systems requires more emphasis on specification, mod-
eling and validation techniques supporting the concepts of reusability and mod-
ifiability, and their implementation in new extensions of existing programming
languages like Java.

The fifth international symposium on Formal Methods for Components and
Objects (FMCO 2006) was held in Amsterdam, The Netherlands, June 7-11,
2007. The program consisted of invited keynote lectures and tutorial lectures se-
lected through a corresponding open-call. The latter provide a tutorial perspec-
tive on recent developments. In contrast to many existing conferences, about half
of the program consisted of invited keynote lectures by top researchers sharing
their interest in the application or development of formal methods for large-scale
software systems (object or component oriented). FMCO does not focus on spe-
cific aspects of the use of formal methods, but rather it aims at a systematic and
comprehensive account of the expanding body of knowledge on modern software
systems.

This volume contains the contributions submitted after the symposium by
both the invited and selected lecturers. The proceedings of FMCO 2002, FMCO
2003, FMCO 2004 and FMCO 2005 have already been published as volumes
2852, 3188, 3657, and 4111 of Springer’s Lecture Notes in Computer Science. We
believe that these proceedings provide a unique combination of ideas on software
engineering and formal methods which reflect the expanding body of knowledge
on modern software systems.

Finally, we thank all authors for the high quality of their contributions, and
the reviewers for their help in improving the papers for this volume.

June 2007 Frank de Boer
Marcello Bonsangue

Susanne Graf

Willem-Paul de Roever



Organization

The FMCO symposia are organized in the context of the project Mobi-J, a
project founded by a bilateral research program of The Dutch Organization
for Scientific Research (NWO) and the Central Public Funding Organization for
Academic Research in Germany (DFG). The partners of the Mobi-J projects are:
the Centrum voor Wiskunde en Informatica, the Leiden Institute of Advanced
Computer Science, and the Christian-Albrechts-Universitat Kiel.

This project aims at the development of a programming environment which
supports component-based design and verification of Java programs annotated
with assertions. The overall approach is based on an extension of the Java lan-
guage with a notion of component that provides for the encapsulation of its
internal processing of data and composition in a network by means of mobile
asynchronous channels.

Sponsoring Institutions

The Dutch Organization for Scientific Research (NWO)

The Royal Netherlands Academy of Arts and Sciences (KNAW)

The Dutch Institute for Programming research and Algorithmics (IPA)

The Centrum voor Wiskunde en Informatica (CWI), The Netherlands

The Leiden Institute of Advanced Computer Science (LIACS), The Netherlands
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{1f ,tretmans}@cs.ru.nl
3 Embedded Systems Institute
Eindhoven — The Netherlands
jan.tretmans@esi.nl

Abstract. In component-based development, the correctness of a sys-
tem depends on the correctness of the individual components and on their
interactions. Model-based testing is a way of checking the correctness of
a component by means of executing test cases that are systematically
generated from a model of the component. This model should include
the behaviour of how the component can be invoked, as well as how the
component itself invokes other components. In many situations, how-
ever, only a model that specifies how others can use the component, is
available. In this paper we present an approach for model-based testing
of components where only these available models are used. Test cases
for testing whether a component correctly reacts to invocations are gen-
erated from this model, whereas the test cases for testing whether a
component correctly invokes other components, are generated from the
models of these other components. A formal elaboration is given in the
realm of labelled transition systems. This includes an implementation
relation, called eco, which formally defines when a component is correct
with respect to the components it uses, and a sound and exhaustive test
generation algorithm for eco.

1 Introduction

Software testing involves checking of desired properties of a software product
by systematically executing the software, while stimulating it with test inputs,
and observing and checking the execution results. Testing is a widely used tech-
nique to assess the quality of software, but it is also a difficult, error-prone,
and labor-intensive technique. Consequently, test automation is an important
area of research and development: without automation it will not be feasible to
test future generations of software products in an effective and efficient manner.
Automation of the testing process involves automation of the execution of test
cases, automation of the analysis of test results, as well as automation of the
generation of sufficiently many and valid test cases.

F.S. de Boer et al. (Eds.): FMCO 2006, LNCS 4709, pp. 1-25, 2007.
© Springer-Verlag Berlin Heidelberg 2007



2 L. Frantzen and J. Tretmans

Model-Based Testing. One of the emerging and promising techniques for
test automation is model-based testing. In model based testing, a model of the
desired behavior of the implementation under test (IUT) is the starting point for
test generation and serves as the oracle for test result analysis. Large amounts
of test cases can, in principle, be algorithmically and completely automatically
generated from the model. If this model is valid, i.e., expresses precisely what
the implementation under test should do, all these tests are valid, too. Model-
based testing has recently gained increased attention with the popularization of
modeling itself.

Most model-based testing methods deal with black-box testing of functional-
ity. This implies that the kind of properties being tested concern the functional-
ity of the system. Functionality properties express whether the system correctly
does what it should do in terms of correct responses to given stimuli, as opposed
to, e.g., performance, usability, or reliability properties. In black-box testing, the
specification is the starting point for testing. The specification prescribes what
the IUT should do, and what it should not do, in terms of the behavior obsery-
able at its external interfaces. The IUT is seen as a black box without internal
detail, as opposed to white-box testing, where the internal structure of the IUT,
Le., the program code, is the basis for testing. Also in this paper we will restrict
ourselves to black-box testing of functionality properties.

Model-based testing with labelled transition systems. One of the formal theo-
ries for model-based testing uses labelled transition systems as models, and a
formal implementation relation called ioco for defining conformance between
an IUT and a specification [10,11]. A labelled transition system is a structure
with states representing the states of the system, and with transitions between
states representing the actions that the system may perform. The implementa-
tion relation ioco expresses that an IUT conforms to its specification if the IUT
never produces an output that cannot be produced by the specification. In this
theory, an algorithm for the generation of test cases exists, which is provably
sound for ioco-conformance, i.e., generated test cases only detect ioco errors,
and exhaustive, i.e., all potential ioco errors can be detected.

Testing of Components. In component-based development, systems are built
by gluing components together. Components are developed separately, often by
different manufacturers, and they can be reused in different environments. A
component is responsible for performing a specific task, or for delivering a spec-
ified service. A user requesting this service will invoke the component to provide
its service. In doing so, the component may, in turn, invoke other components
for providing their services, and these invoked components may again use other
components. A component may at the same time act as a service provider and
as a service requester.

A developer who composes a system from separate components, will only know
about the services that the components perform, and not about their internal
details. Consequently, clear and well-specified interfaces play a crucial role in
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component technology, and components shall correctly implement these inter-
face specifications. Correctness involves both the component’s role as a service
provider and its role as a service requester: a component must correctly provide
its specified service, as well as correctly use other components.

Component-based testing. In our black-box setting, component-based testing
concerns testing of behavior as it is observed at the component’s interfaces. This
applies to testing of individual components as well as to testing of aggregate
systems built from components, and it applies to testing of provided services, as
well as to testing of how other services are invoked.

When testing aggregated systems this can be done ”bottom-up”, i.e., starting
with testing the components that do not invoke other components, and then
adding components to the system that use the components already tested, and so
forth, until the highest level has been reached. Another approach is to use stubs
to simulate components that are invoked, so that a component can be tested
without having the components available that are invoked by the component
under test.

Model-based testing of components. For model-based testing of an individual
component, we, in principle, need a complete model of the component. Such a
model should specify the behavior at the service providing interface, the behavior
at the service requesting interface, and the mutual dependencies between actions
at both interfaces. Such a complete model, however, is often not available. Spec-
ifications of components are usually restricted to the behavior of the provided
services. The specification of how other components are invoked is considered
an internal implementation detail, and, from the point of view of a user of an
aggregate system, it is.

Goal. The aim of this paper is to present an approach for model-based testing of
a component at both the service providing interface and the requesting interface
in a situation where a complete behavior model is not available. The approach
assumes that a specification of the provided service is available for both the
component under test, and for the components being invoked by the component
under test. Test cases for the provided service are derived from the corresponding
service specification. Test cases for checking how the component requests services
from other components are derived from the provided service specifications of
these other components.

The paper builds on the ioco-test theory for labelled transition systems, it
discusses where this theory is applicable for testing components, and where it is
not. A new implementation relation is introduced called environmental confor-
mance — eco. This relation expresses that a component correctly invokes another
component according to the provided service specification of that other compo-
nent. A complete (sound and exhaustive) test generation algorithm for eco is
given.

Qverview. Section 2 starts with recalling the most important concepts of the
ioco-test theory for labelled transition systems, after which Section 3 sets the
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scene for formally testing components. The implementation relation eco is intro-
duced in Section 4, followed by the test generation algorithm in Section 5. The
combination of testing at different interfaces is briefly discussed in Section 6.
Concluding remarks are presented in Section 7.

2 Testing for Labelled Transition Systems

Model-based testing deals with models, correctness (or conformance-) relations,
test cases, test generation algorithms, and soundness and exhaustiveness of the
generated test cases with respect to the conformance relations. This section
presents the formal test theory for labelled transition systems using the ioco-
conformance relation; see [10,11]. This theory will be our starting point for the
discussion of model-based testing of components in the next sections.

Models. In the ioco-test theory, formal specifications, implementations, and test
cases are all expressed as labelled transition systems.

Definition 1. A labelled transition system with inputs and outputs is a 5-
tuple (Q, Ly, Ly, T, qo) where Q is a countable, non-empty set of states; L is a
countable set of input labels; Ly is a countable set of output labels, such that
LinLy=0;TCQxX(LULyU{r}) xQ, withT & L;U Ly, is the transition
relation; and go€Q) is the initial state.

The labels in L; and Ly represent the inputs and outputs, respectively, of a
system, i.e., the system’s possible interactions with its environment!. Inputs are
usually decorated with ‘?” and outputs with ‘!’. We use L = Ly U Ly when we
abstract from the distinction between inputs and outputs.

The execution of an action is modeled as a transition: (g, u,q")€T expresses
that the system, when in state ¢, may perform action p, and go to state ¢’ . This is
more elegantly denoted as ¢ - ¢’. Transitions can be composed: g - ¢’ I, q’,
which is written as g =N q’.

Internal transitions are labelled by the special action 7 (7 ¢ L), which is
assumed to be unobservable for the system’s environment. Consequently, the
observable behavior of a system is captured by the system’s ability to perform
sequences of observable actions. Such a sequence of observable actions, say o, is
obtained from a sequence of actions under abstraction from the internal action

a-7-7-b-cT

7, and it is denoted by == . If, for example, ¢ <7727, ¢/ (q,b,c€L), then we

write ¢ abe, q’' for the T-abstracted sequence of observable actions. We say that
q is able to perform the trace a-b-ce L*. Here, the set of all finite sequences over
L is denoted by L*, with € denoting the empty sequence. If o1, 00,€L* are finite
sequences, then o1-09 is the concatenation of o; and o3. Some more, standard
notations and definitions are given in Definitions 2 and 3.

! The ‘U’ refers to ‘uitvoer’, the Dutch word for ‘output’, which is preferred for his-
torical reasons, and to avoid confusion between Lo (letter ‘O’) and Lo (digit zero).
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Definition 2. Let p = (@, Ly, Ly,T,qo0) be a labelled transition system with
4,4 €Q, u, €L U{T}, a,a;€L, and c€L*.

q+-q Sdet (1, q)ET

gt g Saee 3qoy - @n = qo o L g, =4
g ey Sdef 3¢ g g

g Saef motdg' : g-Hbnsg

q%q’ Saef  g=¢q or ¢g-T=Tsg

q=>q Saef @ =S gp=(

q———>q Bier gl F= G =P e —igp =g
q:> = def 3(1/1 qéﬂl

q;a&} S def not 3¢ : = ¢'

In our reasoning about labelled transition systems we will not always distinguish
between a transition system and its initial state. If p = (Q, Ly, Ly, T, qo), we will
identify the process p with its initial state g, and, e.g., we write p== instead
of go = .

Definition 3. Let p be a (state of a) labelled transition system, P a set of states,
A C L a set of labels, and c€L*.

1. traces(p) =qet { 0EL* |p== }

2. pafterc =g {p |p=17p }

3. Paftero =4 | { paftero |peP }

4. Prefuses A =g 3peP, YucAU{r}: p-LtpH

The class of labelled transition systems with inputs in L; and outputs in Ly is
denoted as LTS(Ly, Ly). For technical reasons we restrict this class to strongly
converging and image finite systems. Strong convergence means that infinite
sequences of T-actions are not allowed to occur. Image finiteness means that the
number of non-deterministically reachable states shall be finite, i.e., for any o,
p after o shall be finite.

Representing labelled transition systems. To represent labelled transition systems
we use either graphs (as in Fig. 1), or expressions in a process-algebraic-like
language with the following syntax:

B = a;B | i;B | ¥B | BJ|[G]|IB | P

Expressions in this language are called behavior expressions, and they define
labelled transition systems following the axioms and rules given in Table 1.

In that table, a€L is a label, B is a behavior expression, B is a countable set
of behavior expressions, G C L is a set of labels, and P is a process name, which
must be linked to a named behavior expression by a process definition of the
form P := Bp. In addition, we use B; O By as an abbreviation for X{Bj, B2},
stop to denote X, || as an abbreviation for |[L]|, i.e., synchronization on
all observable actions, and ||| as an abbreviation for |[]], i.e., full interleaving
without synchronization.



6 L. Frantzen and J. Tretmans

Table 1. Structural operational semantics

B_L)B/
a;:B > B i:B — B rB Y B

BeB, peLuU{r}

B, > B B, > B e
B [[G]|B; 5Bl |[G][B. Bi|[G]|B. 2> B, |[q) B, HEFUITI

B =t S d - > 5, c¢c B2 B o o LU
B, |[G]|B. —*> B} |[G]| B, “ p £ g P=DBp, uelu{r}

Input-output transition systems. In model-based testing there is a specification,
which prescribes what an IUT shall do, and there is the IUT itself which is a
black-box performing some behavior. In order to formally reason about the IUT’s
behavior the assumption is made that the IUT behaves as if it were some kind of
formal model. This assumption is sometimes referred to as the test assumption
or test hypothesis.

In the ioco-test theory a specification is a labelled transition system in
LTS(L1, Ly). An implementation is assumed to behave as if it were a labelled
transition system that is always able to perform any input action, i.e., all inputs
are enabled in all states. Such a system is defined as an input-output transi-
tion system. The class of such input-output transition systems is denoted by
IOTS(L;,Ly) C LTS(Ly, Ly).

Definition 4. An input-output transition system is a labelled transition system
with inputs and outputs (Q, L1, Ly, T, qo) where all input actions are enabled in
any reachable state:

Vo,q: qo==q implies VaeL; : g =

A state of a system where no outputs are enabled, and consequently the system
is forced to wait until its environment provides an input, is called suspended, or
quiescent. An observer looking at a quiescent system does not see any outputs.
This particular observation of seeing nothing can itself be considered as an event,
which is denoted by § (6§ ¢ LU {r}); p -2+ p expresses that p allows the obser-

; : . 6:7a-6-7b-lx
vation of quiescence. Also these transitions can be composed, e.g., p

expresses that initially p is quiescent, i.e., does not produce outputs, but p does
accept input action ?a, after which there are again no outputs; when then input
?b is performed, the output !z is produced. We use Ls for L U {6}, and traces
that may contain the quiescence action § are called suspension traces.

Definition 5. Let p = (Q,L;,Ly,T,q0)eLTS(Ly, Ly).

1. A state q of p is quiescent, denoted by 6(q), if Yue€Ly U{r}: q—Lph
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2. Ds =def <Q7 L17 LUU{6}1 TUT§7 q0 >1
with Ts =aet { -2 q | ¢€Q, 6(q) }
3. The suspension traces of p are Straces(p) =get { 0€L} | ps= }

From now on we will usually include é-transitions in the transition relations, i.e.,
we consider ps instead of p, unless otherwise indicated. Definitions 2 and 3 also
apply to transition systems with label set Ls.

The implementation relation ioco. An implementation relation is intended to
precisely define when an implementation is correct with respect to a spec-
ification. The first implementation relation that we consider is ioco, which
is abbreviated from input-output conformance. Informally, an implementation
i€ZOTS(Lt, Ly) is ioco-conforming to specification seLTS(Ly, Ly ) if any ex-
periment derived from s and executed on ¢ leads to an output (including quies-
cence) from i that is foreseen by s. We define ioco as a special case of the more
general class of relations iocox, where F C L} is a set of suspension traces,
which typically depends on the specification s.

Definition 6. Let q be a state in a transition system, Q) be a set of states,
i€TOTS(L;, Ly), s€LTS(Ly,Ly), and F C (L; U Ly U {6})*, then

1. out(q) =qger {z€Ly g } U {6]6(q) }

2. out(Q) =aet U { out(q) | ¢eQ }

3. iiocor s gt VoeF: out(iaftero) C out(saftero)
4. 1i0c0 5  Sget T 10COgsaces(s) S

13}

Fig. 1. Example labelled transition systems

Ezample 1. Figure 1 presents three examples of labelled transition systems mod-
eling candy machines. There is an input action for pushing a button ?but, and
there are outputs for obtaining chocolate !choc and liquorice !lig: Ly = {?but}
and Ly = {!lig, !choc}.

Since ki, ko€ZOTS (L1, Ly) they can be both specifications and implemen-
tations; k3 is not input-enabled, and can only be a specification. We have that
out( ky after ?but ) = {!lig} C {!lig,!choc} = out( ks after 7but ); so we get now



