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Preface

Modern radar, communications, and radio astronomy place increasing
demands for large-aperture antennas which are capable of high-speed
scanning and simultaneous operation of multiple functions. An array of
radiating elements with independent phase control, that is, a phased array,
can provide these capabilities. Most of the methods that have been used in
the design of phased arrays have relied on classical array theory, which
neglects mutual coupling, approximate analytical methods, experimental
techniques, and combinations thereof. In modern array radar antennas
which require wide angle scanning, it has been found that the mutual
coupling between antenna elements plays a most significant role in deter-
mining the array performance. The effects of mutual coupling are not
properly accounted for in the approximate analytical methods. The design
of large phased arrays, often using many thousands of antenna elements, by
experimental methods is a time consuming and very costly procedure. A
need exists, therefore, for a general understanding of the performance of
phased aray antennas as well as for efficient design methods in which the
effects of mutual coupling are incorporated.

The purpose of this book is to present a mathematical approach for the
analysis and design of a broad class of phased array antennas and to examine
their electromagnetic properties. It is hoped that this book will provide not
only a basic understanding of the properties of phased array antennas, but
also the analysis and synthesis techniques needed to design these expensive
antennas efficiently before large funds are committed for construction.

Emphasis is placed on the analysis of uniformly and closely spaced planar
arrays of open ended waveguides. The boundary value problem associated
with these arrays is rigorously formulated and expressed by one of several
types of integral equations. The integral equations can be solved numerically
(and analytically in special cases) with a very high degree of accuracy. The
solution provides a complete characterization of the electromagnetic field,
from which pertinent array properties, such as the reflection and radiation
(including polarization) characteristics and mutual coupling coefficients,
are derived. The formulation and numerical methods can be extended to
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viii Preface

dipoles and other related types of array elements. Since dipole arrays have
been treated elsewhere, we shall not dwell upon them here. The pattern
synthesis and system aspects of phased array antennas have also been
extensively discussed in the literature and therefore will not be considered
herein.

In Chapter 1 we introduce the reader to the terminology and concepts of
phased arrays, and review various approaches to array analysis. The de-
pendence of the array properties on mutual coupling is demonstrated. In
Chapter 2 we discuss Floquet’s theorem and utilize it in the formulation of
the boundary value problems associated with infinite and periodic arrays.
Various integral equations and variational expressions are derived. Methods
of solving these equations are presented in Chapter 3. Emphasis is placed
on numerical methods which can be handled efficiently by high speed and
large storage digital computers. A general discussion of various techniques
for ascertaining the validity and accuracy of a solution is presented.

In Chapter 4 we derive an analytical solution to the infinite parallel-plate
phased array with thin walls. Certain basic array relationships are presented,
and examples of performance data are also given. The characteristics of
planar arrays of rectangular waveguides are discussed in Chapter 5. The
existence of forced surface wave resonances which cause blindness in phased
arrays is demonstrated. For the purpose of illustration, some of the techniques
developed in Chapters 2 and 3 are rederived for parallel-plate arrays. In
Chapter 6 we examine the effects of dielectric loading on the basic properties
of parallel-plate arrays. The improvement of impedance match and the
appearance of forced surface wave resonances are considered in detail.

The properties of infinite planar arrays of circular waveguides with and
without dielectric loading are investigated in Chapter 7. Again, forced
surface wave resonances are observed and their salient features are discussed.
The extension of the integral equation formulation to skewed periodic and
planar grid arrays is derived. In Chapter 8 we extend the integral equation
formulation to uniformly and nonuniformly spaced finite arrays and a
certain class of infinite aperiodic arrays. Dispersion relations for periodically
modulated surfaces are derived. The relationship between the forced surface
wave resonances in infinite arrays and these dispersion relations is demon-
strated. The relation between the array element characteristics and the
proximity of an element to the edge of a finite array is examined. In the final
chapter, we present systematic methods to optimize the array match over a
prescribed scan region and frequency band. These methods are quite general
and are applicable to any type of array element. Experimental methods to
characterize the array terminal relationships are also discussed.

Basically, this book is a research monograph. Although the material
presented is drawn from many technical publications, the book is based
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mainly on work performed at Bell Telephone Laboratories, where a con-
siderable effort has been devoted to phased array research and development.

A bibliography is provided to assist the reader in finding additional
information that could not be included in a book of this scope. However,
there has been no attempt to make the bibliography complete.

This book is addressed to engineers, physicists, and students who are
active or interested in phased arrays and antennas. It is written on an
intermediate level. Familiarity with Maxwell’s equations, guided wave
theory, and elementary antenna theory is assumed. The book may serve as
a supplementary text for graduate courses in antennas and applied electro-
magnetic theory and applications.

We are indebted to our colleagues at Bell Telephone Laboratories for
their cooperation and advice. Special thanks are due to Messrs. J. S. Cook
and R. Lowell Dr. E. R. Nagelberg for their constructive comments and
encouragement. The support of Bell Telephone Laboratories and TRW
systems in the preparation of the manuscript is gratefully acknowledged.

We wish also to thank the following organizations for permission to use
parts of certain articles which appeared in their various publications: The
Institute of Electrical and Electronic Engineers, Inc., the American Telephone
and Telegraph Co., and the American Geophysical Union.

NOACH AMITAY
VIicTorR GALINDO
CHEN PANG WU

Whippany, New Jersey
Blacksburg, Virginia
August 1971
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1. Introduction to Array Theory

1. INTRODUCTION

The ever-increasing demands of the space and missile age upon modern
radar and communication systems have propelled phased array antennas
into the limelight. The need for specialized multifunction operation (i.e.,
simultaneous surveillance, discrimination, tracking, etc.), coupled with high
power, high data rates, and the ability to withstand adverse environmental
conditions, has stimulated considerable activity in the research, design, and
deployment of phased array radars and antennas. Figures 1.1-1.4 show some
of the phased array antennas that have already been designed and con-
structed. Phased array antenna systems have been deployed on the ground
and aboard ships. It is anticipated that phased arrays with miniaturized
components will eventually be deployed in space and aboard aircraft as well.

An array antenna refers to an antenna system consisting of more than one
antenna element radiating in phase coherence. Horns (open ended wave-
guides), dipoles, helices, spiral antennas, polyrods, parabolic dishes, and
many other types of antennas may constitute the radiating elements. The
array concept was originally introduced mainly as a means for achieving a
better control of the antenna aperture illumination. In order to obtain high
angular resolution, large planar arrays are being utilized.

A periodic planar phased array consists of identical radiating elements
which are arranged in a planar and doubly periodic grid. Constant incre-
mental phase shifts (steering phases) are applied between adjacent elements
in order to electronically scan the radiation pattern of the array in free space.
In this chapter, the significance of analyzing phased arrays by means of a
solution to a rigorously formulated boundary value problem is discussed.
Also, the weaknesses of various approximate approaches are brought out.

In what may be termed “classical” array theory, the mutual coupling
between the array elements is neglected. Thus, the radiation pattern of a
finite sized phased array is expressed as a product of the array factor and the
radiation pattern of the array element. The array factor determines the beam
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Fig. 1.1. MAR/WSMR: Multifunction array radar installed at White Sands Missile
Range (courtesy Bell Telephone Laboratories).

Fig. 1.2. Mobile surface to air missile radar (courtesy Hughes Aircraft Company).
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Fig. 1.3, AN/FPS-85: Air Force space track radar (courtesy Bendix Communication
Division).

shape and sidelobe level of the array radiation pattern and also relates the
array geometry and steering phases to the direction cosines of the beam
pointing directions. The special functional relationship between the array
factor, the steering phases, and the beam directional cosines lends itself to a
convenient graphical diagram, known as the grating lobe diagram, whichis a
useful concept often employed in the discussion of array properties and the
design of phased array antennas. This diagram will be discussed in more
detail later.

Experimental and theoretical investigations have clearly indicated that
mutual coupling cannot be ignored, especially in the case of closely spaced
array elements (i.e., spacing of the order of half a wavelength). The mutual
coupling strongly affects the radiation and reflection characteristics (as a
function of the beam pointing direction) of phased array antennas. Further-
more, in a finite sized array, the radiation patterns and the reflection charac-
teristics of the various elements may depend on their relative positions in the
array. They are strongly influenced by the proximity of an element to the
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Fig. 1.4. MSR: Missile site radar installed at Meck Island (courtesy Bell Telephone
Laboratories).

edge of the array. In the case of “large” planar arrays, however, the bulk of
the inner core elements behave almost uniformly, and the important aspects
of this behavior may be approximated well by the uniform behavior of
elements in an infinite array. Thus the infinite array can serve as a useful
model for the analysis of large planar arrays. In this case the array radiation
pattern can still be expressed as a product of the array factor and the element
radiation pattern, the latter being determined in an infinite array environ-
ment. The effects of mutual coupling are taken care of by the element
radiation pattern (excited in the array environment with the rest of the
elements being properly terminated). Certain general expressions which
relate the mutual coupling coefficients, the reflection coefficients, and the
radiation power pattern of an element can be derived. In addition the
concept of ideally matched arrays is expressed in terms of an ideal element
power radiation pattern.

Infinite arrays of narrow slots, dipoles, and current elements have been
analyzed in previous years. However, these models, as well as the approxi-
mations involved in their analysis, tend to be limited in their applicability in



