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INTRODUCTION

An algebraic function y of a complex variable z is a function which satisfies
an equation of the form F(z, y) = 0, where F is a polynomial with complex
coefficients; i.e., y is a root of an algebraic equation whose coefficients are rational
functions of . This very definition exhibits a strong similarity between the
notions of algebraic function and algebraic number, the rational functions of z
playing a role similar to that played by the rational numbers. On the other hand,

the equation F(z, y) = 0 may be construed to represent a curve in a plane in
- which z and y are the coordinates, and this establishes an intimate link between
the theory of algebraic functions of one variable and algebraic geometry.

Whoever wants to give an exposition of the theory of algebraic functions of one
variable is more or less bound to lay more emphasis either on the algebraico-
arithmetic aspect of this branch of mathematics or on its geometric aspect. Both
points of view are acceptable and have been in fact held by various mathe-
maticians. The algebraic attitude was first distinctly asserted in the paper
Theorie der algebraischen Funktionen einer Verdnderlichen, by R. Dedekind and
H. Weber (Journ. fiir Math., 92, 1882, pp. 181-290), and inspires the book
Theorie der algebraischen Funktionen einer Variabeln, by Hensel and Landsberg
(Leipzig, 1902). The geometric approach was followed by Max Noether, Clebsch,
Gordan, and, after them, by the geometers of the Italian school (cf. in particular
the book Lezione di Geometria algebrica, by F. Severi, Padova, 1908). Whichever
method is adopted, the main results to be established are of course essentially the
same; but this common material is made to reflect a different light when treated
by differently minded mathematicians. Familiar as we are with the idea that
the pair ‘‘observed fact—observer” is probably a more real being than ‘the
inert fact or theorem by itself, we shall not neglect the diversity of these various
angles under which a theory may be photographed. Such a neglect should be
particularly avoided in the case of the theory of algebraic functions, as either
mode of approach seems liable to provoke strong emotional reactions in mathe-
matical minds, ranging from devout enthusiasm to unconditional rejection.
However, this does not mean that the ideal should consist in a mixture or synthe-
sis of the two attitudes in the writing of any one book: the only result of trying to
obtain two interesting photographs of the same object on the same plate is a
blurred and dull image. Thus, without attacking in any way the validity per se of
the geometric approach, we have not tried to hide our partiality to the algebraic
attitude, which has been ours in writing this book.

The main difference between the present treatment of the theory and the one
to be found in Dedekind-Weber or in Hensel-Landsberg lies in the fact that the
constants of the fields of algebraic functions to be considered are not necessarily
the complex numbers, but the elements of a completely arbitrary field. There
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vi INTRODUCTION

are several reasons which make such a generalization necessary. First, the
analogy between algebraic functions and algebraic numbers becomes even closer
if one considers algebraic functions over finite fields of constants, In that case,
on the one hand class field theory has been extended to the case of fields of
functions, and, on the other hand, the transcendental theory (zeta function,
L-series) may also be generalized (cf. the paper of F. K. Schmidt, Analytische
Zahlentheorie in Korpern der Charakteristik p, Math. Zeits., 33, 1931). Moreover,
A. Weil has succeeded in proving the Riemann hypothesis for fields of algebraic
functions over finite fields, thereby throwing an entirely new light on the classical ,
i.e., number theoretic, case (cf. the book of A. Weil, Sur les courbes algébriques et
les variétés qui s'en déduisent, Paris, Hermann, 1948 ; this book contains an
exposition of the theory from a geometric point of view, although this point of
view is rather different from that of the Italian geometers). Secondly, if S is an
algebraic surface, and R the field of rational funetions on 8, then R is a field of
algebraic functions of one variable over K{(z), where K is the basic field and z a
non constant element of B. E. Picard, among others, has very successfully used
the method of investigation of S which amounts to studying the relationship
between K and various fields of the form K(z) (cf. E. Picard and G. Simart,
Théorie des fonctions algébriques de deux variables independantes, Paris, Gauthier-
Villars, 1897). Now, even when K is the field of complex numbers, K(z) is not
algebraically closed, which makes it necessary to have a theory of fields of
algebraic functions of one variable over fields which are not algebraically closed.

The theory of algebraic functions of one variable over non algebraically closed
fields of arbitrary characteristic has been first developed by H. Hasse, who
defined for these fields the notion of a differential (H. Hasse, Theorie der Differ-
entiale in algebraischen Funktionenkorpern mit volkommenen Konstantenkorper,
Journ. fiir Math., 172, 1934, pp. 55-64), and by F. K. Schmidt, who proved the
Riemann-Roch theorem (F. K. Schmidt, Zur arithmetischen Theorie der alge-
braischen Funktionen, I, Math. Zeits., 41, 1936, p. 415). In this book, we have
- used the definition of differentials and the proof of the Riemann-Roch theorem
which were given by A. Weil (A. Weil, Zur algebraischen Theorie der algebraischen
Funkiionen, Journ. fir Math., 179, 1938, pp. 129-133).

As for contents, we have included only the elementary part of the theory,
leaving out the more advanced parts such as class field theory or the theory of
correspondences. However, we have been guided by the desire of furnishing a
suitable base of knowledge for the study of these more advanced chapters.
This is why we have placed much emphasis on the theory of extensions of fields of
algebraic functions of one variable, and in particular of those extensions which
are obtained by adjoining new constants, which may even be transcendental
over the field of constants of the original field of functions. That the consideration
of such extensions is desirable is evidenced by the paper of M. Deuring, Arithme-
tische Theorie der Korrespondenzen algebraischen Funktionenkérper, Journ. fiir
Math., 177, 1937. The theory of differentials of the second kind has been given
only in the case where the field under consideration is of characteristic 0. The
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reason for this restriction is that it is not yet clear what the “good” definition of
the notion should be in the general case: should one demand only that the
residues be all zero, or should one insist that the differential may be approximated
as closely as one wants at any given place by exact differentials (or a suitable
generalization of these)? Here is a net of problems which, it seems, would deserve
some original research. The last chapter of the book is concerned with the theory
of fields of algebraic functions of one variable over the field of complex numbers
and their Riemann surfaces. The scissor and glue method of approach to the
idea of a Riemann surface has been replaced by a more abstract definition,
inspired by the one given by H. Weyl in his book on Riemann surfaces, which
does not necessitate the artificial selecting of a particular generation of the field
by means of an independant variable and a function of this variable. We have
also avoided the cumbersome decomposition of the Riemann surface into
triangles, this by making use of the singular homology theory, as developed by
S. Eilenberg. .

I have been greatly helped in the writing of this book by frequent conversations
with E. Artin and O. Goldman; I wish to thank both of them sincerely for their
valuable contribution in the form of advice and suggestions.



NOTATIONS FREQUENTLY USED

Con z/5: conorm from R to 8 (IV, 7).

Cosp g/s: cotrace from B to S (for repartitions, IV, 7; for differentials, VI, 2 and V1, 6).

d(a): degree of a divisor o (I, 7).

b(z): divisor of an element z (I, 8).

b(w): divisor of a differential w (II, 6).

3(a): dimension of the space of differentials which are multiple of a divisor ¢ (II, 5).

d: boundary (VII, 3). ]

H,(X, Y): n-dimensional homology group of X modulo ¥ (VII, 3).

2(v, v'): intersection numbers of the 1-chains v and 4’ (VII, 6).

Jlw, &"): (VIX, 5).

K{(---): field obtained by adjunction to the field K of the element or elements or set of -
elements whose symbols are between the sign { and the sign ); special meaning for
fields of algebraic functions of one variable defined in Vv, 4.

i(n): dimension of the space of elements which are multiples of a divisor a (II, 1).

»: order function at a place p (for elements, I, 5 and II1, 1; for repartitions, II, 4; for
differentials, IT, 6).

Ngiz: Norm from 8 to B (IV, 7).

x, 8/R: (IV » 5) .

«® :p-component of a differential w (IT, 7).

res po: residue of a differential w at a place p (II1, 5).

Bpg/r: Trace from § to B (for repartitions, IV, 7; for differentials, VI, 2).

8ps/z: (IV, 5). _

| v |: set of points of & chain v (VII, 3).

xi
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CHAPTER I
PLACES AND DIVISORS

§1. FIELDS OF ALGEBRAIC FUNCTIONS OF ONE VARIAELE

~ Let K be a field. By a field of algebraic functions of one variable over K we
mean a field R containing K as a subfield and which satisfies the following
condition: B contains an element z which is transcendental over K, and R is
algebraic of finite degree over K(z).

The element x is of course not uniquely determmed If =’ is any element of B
which is transcendental over K, then R is algebraic of finite degree over K(z’).
In fact, the degree of transcendency of R over K being one, R is algebraic over
K{z'). In particular, z is algebraic over K(z'), and K(z, ') is of finite degree over
K(z'). Since R is of finite degree over K(z), it is a fortior of finite degree over
K({z, 2’), which proves that it is of finite degree over K(z’).

Those elements of KB which are algebraic over K are called constants. They

" form a certain subfield K’ of R, the field of constants. The field R is also a field of
algebraic functions of one variable over K’. In fact, any element x of R which is
transcendental over K is also transcendental over K’, and R, which is algebraic of
finite degree over K(z), is also algebraic of finite degree over K'(z).

It is important to keep in mind that, when diseussing properties of a field R of
algebraic functions of one variable, we shall consider in fact not properties of the
field R alone but properties of the pair formed by K and R. For instance, let Z be
any field, and set B = Z(z, y, 2), where z and y are algebraically independent
over Z and z is algebraic over Z(z, y). Set K, = Z(z), K; = Z(y). Then R is a
field of algebraic functions of one variable over either one of the fields K; or K;
but its properties as a field of algebraic functions of one variable over K; may be
quite different from its properties as a field of algebraic functions of one variable
over K3 .

However, when considering a field R of algebraic functions of one variable
over a field K, the field of constants of R will appear more and more to be the
essential object instead of K itself, which will gradually fade into the background.

§2. PrAcESs

Let R be a field and K a subfield of B. By a V-ring in R (over K) is meant a
subring o of B which satisfies the following conditions:

1. o contains K;

2. o is not identical with R;

3. If z is an element of R not in o, then z ™" is in o.
Let o be a V-ring. Those elements in o which are not units in o (we call them
“non-units”’) form an ideal p in o. In fact, if # is a non-unit and z € 0, then zz

1



2 PLACES AND DIVISORS

is a non-unit, because, if £z had an inverse » in o, zu would be in o and inverse
of 2. Now, let # and y be non-units in o. If either z or y is 0, z — y is clearly a
non-unit. If z and y are both £ 0, one at least of the pair of inverse elements z/y
andy/zisin 0. If z/y €0, then x — y = y(x/y — 1) is a non-unit; if y/z ¢ o, then
z — y = z(1'— y/z) is a non-unit. Thus the non-units of o form an ideal p. Any
ideal in o containing p but # p contains a unit and therefore coincides with o.

Now, let R be a field of algebraic functions of one variable over a field K.
By a place in R we mean a subset p of B which is the ideal of non-units of some
V-ring o of R (over K). This V-ring is uniquely determined when } is given. In
fact, it is the set of all z e R such that zp C p (we mean by zp the set of products
of = by elements of p). To show this, we observe first that any x e o has the
required property; on the other hand, if z ¢ o, then z is in o0 and is not a unit,
whence z e p and 1 ezp, zp & p. The ring o is called the ring of the place p.
The elements of o are said to be iniegral at the place .

Since every element of o not in p is & unit in o, we see immediately that the
residue ring o/p is a field. This field is called the residue field of the place p.

The ring o is integrally closed in R, i.e., every element = of B which satisfies
an equation of the form z* + Z.-l a,x" ~ =0, thh @, *-+, Gy in o, iteelf
belongs to ». For were this not the case, then 2z~ would belong to p, and we
would have 1 = Z._l ai(x™)* e p, which is impossible. It follows in particular
that the ring of any place contains the field of constants K’ of R. This shows
that the notion éfsplace in R is the same whether we consider R as a field of
algebraic functions over K or over K’. On the other hand, we have K’ Ny = {0},
which proves that the nataral homomorphism of o onto_the residue field = = o/p
of p maps K’ isomorphically upon a subfield of Z. We shall allow ourselves,
whenever convenient, to speak of = as of an overfield of K’; this amounts to
not distinguishing between the elements of K’ and their residue classes modulo p.

§3. Praces oF THE mELD K(z)

Let us consider the special case where B = K(z), with, of course, = tran-
scendental over K. Let f = f(z) be an irreducible polynomial in z with coefficients
in K. Any element % of R may be written in the form v = g/h, with g and & -
in the ring K[z]. Let o, be the set of elements u of the form g/h, with h not divisible
by 7. Since f is irreducible, it cannot divide a product of polynomials without

dividing one of them. Thus the formulas -

B _ g _ Qe — gln ‘g2 _ Gigs

T he T Mk | mh kb
show that o, is & subring of R. It is clear that this subring contains K. Moreover,
1/f is not in o, , because, if we write 1/f = g/h, where g and h are polynomials
in z, h = gf is divisible by f; this shows that o; ¥ R. Now, let u be any element
of R not in o; . We may write « in the form g/h, where g and h are polynomials
in z without common factor. Since u ¢ o7 ; I d1v1des h, and therefore f does not
divide g, whence 4> = h/g e o, . Thus o, is a_V-ring; we shall denote by p, the
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corresponding place. It is clear that y; consists of all elements of the form fg/h,
where g and h are polynomials in z, and 4 is not divisible by f.

Thus, to every irreducible polynomial f in z with coefficients in KX we have
associated a place p; of K(z). If f and f’ are essentially distinet irreducible poly-
nomials (i.e., f/f not in K), the places p; and p;, are distinct because f™ belongs
to 9, but not to o, .

Now, observe that, if weset ' = 27", we have K(z' ) = K(z). It follows that to
every irreducible polynomial in z’ w1th coefficients in K, there is associated a
place of K(z). This applies in particular to the irreducible polynomial z’; we
shall denote by 9/, the place defined by ' and by o0y the ring of this place.
The place py/. is distinet from all the places p; defined above, because, if f is
any irreducible polynomisl in z, we have z ¢ oy , while z clearly does not belong
to oyz .

Now we assert that the places p; (for all irreducible polynomials f in z with
coefficients in K) and py/, exhaust all the places of R. Let p be any place in R,
and let o be its ring. Assume first that z ¢ 9. Since o is a ring and contains K,
it follows that o contains the entire ring K[x]. Since p is obviously a prime ideal
in o, p N K[z] is & prime ideal in K[z]. Thus p N K[z] either is the zero ideal or is
formed of all multiples of some irreducible polynomial f. The first case is impos-
sible because every element ¢ 0 of K[z] would then be a unit in o, from which it
~ follows immediately that every element of B would belong to 0. Thus p N K[z]
consists of the multiples of some irreducible f. If g and % are in K[z], and % is not
divisible by f, then % is not in p and is therefore a unit in o, whence gh™ e o,
which proves that o confains o; . Let u be an element of B not in o ; then we
may write % = g/h, where g and h are in K[z], have no common factor, and 4 is
divisible by f. If » were in o, the same would be true of A = g~u; but this is
impossible becafise A, being in p, is not & unit in 0. We have therefore proved
that, if € 0, then p is one of the places p; . If z is not in o, then 2’ = z ™" is, and
we see that p ) K[z'] consists of all dements of K[z'] which are divisible (in
K[z’]) by some irreducible polynomial f’(z’) in z’ with coefficients in K. Since z’
is not a unit in o, it is in p N K[z’] and is therefore divisible by f'(z’) in K[ 1.
Thus we may assume that f = x’; p is then the place pl/z

It is clear'that, if f is an irreducible polynomial in z with coefficients in K,
then ps.is the principal ideal generated in o; by f: p; = fo,. Similarly, py,. is
A/2)pe -

Lef p be any place of B = K(z). Denote by o the ring of p and by { a generator
of p (i.e., p = o). Then no element 7 0 of o can belong to "o for every n > 0.
In fact, assume first that 0 = o, for some irreducible polynomial f in z. Let

= g/h be an element of o which belongs to t"» for every n (g and h arein
+ K[z], and & is not divisible by f). Since p = fo = fo, we see easily that t"o = f"o.
We have by assumption, for each n, an equality of the form g/h = f"g./h. with
gn and h, in K[z] and k, not divisible by f. Thus gh. = f"g.h; since f is irreducible
and does not divide k., , it follows easily that f* divides g. This being true for every
n, we have g = 0, whence © = 0. A similar argument applies if 0 = 0y2 .
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Now, abandon for a moment the assumption that R is of the form K(z).
Assuming only that R is a field of algebraic functions of one variable over K,
let p be a place of B which satisfies the following condition:

The ring o of b contains an element t such that p = to and N5—; t"0 = {0}.
{We shall see later that every place of R satisfies this condition.) If = ¢ R, there
exists at least one integer » (which may be negative) such that = ¢2"o. In fact,
if z € 0, we may take n = 0. If not, then z ' is in 0 and is ¢ 0; therefore there
exists an m > 0 such that 27 et™, 7 ¢¢™*'0, which means that £ ™z is in o
but not in ¢o = p;ie., £ ™z ' isa unit in o, and z = £ "¢ "2 )" is in £ "p.
If z # 0, there is by assumption a largest integer n such that z ¢ t"0; denote By
v,(x) this integer. If x and y are elements = 0 in o, then

1) « “ »(@) + ) = r(zy)
and,if z + y #= 0, '
) v(x + y) Z min {5 (), n¥)}.

In fact, zy clearly belongs to *“**%p, whence v,(zy). 2 () + » (). In
particular, 0 = »,(1) 2 »;(z) + w(@), ie., nE) < —i:,,'(:v). Now, if we write
z = "y ubelongs too but not tofo = p,i.e., uisaunitino and z™' = ¢ @y,
whence »,(z™") = —v,(z), and therefore »,(x™") = —w,(z). We conclude that
v () = wlzyz™) = »(xy) — »,(z), and, comparing with the inequality obtained
above, vy (zy) = »(x) + »,(y). On the other hand, if » = min {»,(z), »,(¥)}, we
have z e t0, y € t*0, whence = + y ¢ 0 and therefore »,(z + y) = 4.

To complete the definition of the function », (which has not been defined for 0),
we make the convention to write »,(0) = «, where « is a symbol with which we
compute according to the following rules: « > n for every integer n; © 2 «;
w + n = w for every integer n; ® + o = . Taking these conventions into
account, the formulas (1) and (2) are valid in every case.

1t should be observed that the equality »,(z + y) = min {»,(z), »(y)} holds
whenever »,(z) # »,(y). In fact, assume that »,(z) < »,(y). We have »(z) =
»(@ + y — y) 2 min {5z + y), »(—y)}; but it is easily seen that »(—y) =
v, (=1) + 3, (y) = »,(y); thus it is impossible that »,(z + y) > » (z).

More generally, we see easily by induction on m that, if 21, - -+, Zm are any
elements of R, then
Vb(zl + e + xm) g min {”v(xl)g R} v,(x,,.)}
and that the equality prevails if there is only one index ¢ such that », () =
min {Vv(xl), ] Vb(xm)}' '

The definition of the function », involves the choice of an element £ such that
p = {o; but actually the function », depends only on the place p. In fact, assume
that ¢’ is any element of p such that p = #'0. Then ¢ = t'u with u € 0, and, since
¢ e to, u ' e 0. It follows immediately that t"o C¢'"0 and t'"p C t"o for every n,
which proves our assertion. The function », is called the order function at the
place p; if = e R, »,(z) is called the order of z at p. The knowledge of the order
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function at a place p determines this place completely, because the ring o of the
place consists of all elements z for which »(z) = 0. The elements of p are the
elements whose orders are >0, and the units of 9 are the elements of order 0.
The elements ¢ for which p = #o are the elements of order 1; they are also called
uniformizing variables at v.

Now, let us return to the case where R is of the form K(z), with the supple-
mentary assumption that K is the field of complex numbers. If a ¢ K ,Z — als an
irreducible polynomial and every irreducible polynomial in x with coefficients
in K is of the form AM(z — a), Ae K, X 3 0. Denote by p. the place which cor-
responds to the irreducible polynomial z — a. The polynomials k in x which are
divisible by z — a are those for which k(a) = 0. Thus the elements of the ring
0 of p, are the rational fractions which do not admit a as a pole, while the
‘elements of p, are the rational fractions which admit a as a zero. Furthermore,
if », is the order function at y, , any rational fraction u = 0 may be written in
the form (zr — a)"*™v, where v admits a neither as a zero nor as a pole. It follows
that, if »,(«) > 0, then « admits a as a zero of order va(u), while, if »,(u) < 0, u
admits a as a pole of'order — y,(u).

Generalizing this terminology, we set up the following definitions (where R
is a field of algebraic functions of one variable over a field K):

Let p be a place of R. If an element x ¢ R belongs to p, then we say that p-
is a zero of z; if z ' e p, then we say that p is a pole of . Furthermore, if there
exists an order function », at p, and »,(z) > 0, then we say that p is a zero of
order vy(z) of x, while, if »,(z) < 0, we say that p is a pole of order —»,(z) of z.

Consider in particular the case where B = K{(z) and p = py/,. Let ¢ = agz™ +
aix"™ + --- + a, be a polynomial of degree n in z with coefficients in K. If
z' = 7', we can write

g =at"(a + aw’ + -+ + aa™).

Now, ao + a1z’ + - -+ + @.z'" belongs to the ring o of p and is not in p because
ao # 0. It follows that a polynomial of degree 7 in = admits py/. as a pole of order
n. If w = g/h ¢« B (where g and h are polynomials in x), the order of « at p is
clearly the difference between the degrees of h and g.

Still assuming that R = K(z), let f be any irreducible polynomial in z with
coefficients in K; we propose to investigate the residue field = of the place p,,
ie., the ring o,/p;. Set ¢ = p; N K[z]; then those residue classes modulo p,
which are represented by elements of K[x] form a subring Z; of = which is clearly
isomorphic with K[z]/ q. But g is the set of multiples of f in K[z]; it follows that
Ki|z]/q is a field which can be obtained from K by adjunction of an element §
which satisfies the equation f(¢) = 0. Now, every element u of o, can be written
in the form g/h, with g and h in K[z] and A not in q. Let §, %, and @ be the residue
classes of g, h, and u respectively; then § = a!, k s 0, whence @ =gh™". But §
and % are in =, which is a field ; therefore % ¢ Z; and = = Z; . Thus, the residue
field Z of p; can be obtained from K by adjunction of an element { such that
J(&) = 0. In particular, we see that = is algebraic over K, of finite degree equal
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to the degree of the polynomial f. In the case where /= z, we have = = K; this
shows that the field of constants of K(z), which contains K and is contained
in Z, must be K itself. Replacing the consideration of z by that of 1/z, we see
that the residue field of py, is K. '

If K is algebraically closed, every irreducible polynomial in  with coefficients
in K is of degree 1, and therefore the residue field of any place coincides with K.
Let then p, be the place which corresponds to £ — @, and let « be an element of
K{x) which does not have q as a pole. Write u = g/h, with g and & in K[z] and
h(a) # 0. We have :

g(x)h(a) — h(z)g(a)
h(a)h(x)

and g(z)h(a) — h(x)g(a) is divisible by z — a. Thus, the value u(a) taken by u
at a is also the residue class of 4 modulo p, .
. More generally, let R be a field of algebraic funetions of one variable over an
arbitrary field K, and let p be a place of R. Let z be an element of R for which p
is not a pole. Then the residue class of £ modulo p (which is an element of the
residue field of p) will be called the value taken by z at p. It should be observed
that, if K is not algebraically closed, the value taken by z at b is not in general
an element of K. The value taken by z at p is denoted by #(p); it is clear that, if
neither z nor y has p as a pole, then (z + ) (b) = z(p) + y(p), (@) (p) = z(D)y(p).
The elements which admit p as a zero are those which take the value 0 at .
It is often convenient to say that an element of R which has p as a pole takes
the value « at p; « is here a symbol which has no intrinsic connection with the
symbol « which was used to complete the definition of the order function
at a place.

u — ulg) =

§4. EXISTENCE OF PLACES

We shall prove in this section a theorem which implies that any field of alge-
braic functions of one variable admits infinitely many places. ‘

THEOREM 1. Let R be a field of algebraic functions of one variable over a field K.
Assume that we are given a subring o of R containing K and an ideal p in o not
containing 1 but £ {0}. Then there exists a place B of R whose ring O contains o
and which is such that p < B N o.

If o’ is any subring of R containing o, we shall denote by po’ the ideal generated
in o’ by the elements of p. We denote by F the family of all subrings o’ of R
containing o which are-such that po’ s o'; in particular, o itself belongs to .
We shall prove that F contains at least one maximal element (i.e., there is a
ring in F which is not properly contained in any other ring of the family F),
and that any such maximal elenffent is a V-ring.

To prove the first assertion, it is sufficient, in virtue of Zorn’s Lemma, to
prove that the family Fis inductive, i.e., that if F” is a non empty subfamily of F
such that, of any two rings in J’, one contains the other, then & contains a ring
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which contains all rings of the family F’. To do this, denote by o; the set-theoretic
union of all rings of F’. If x and y are in o, , then z ¢ o', y ¢ 0”’, where o’ and o’”
are in F’; one of the rings o/, o’ contains the other. If for instance o’ contains 0",
then z and y are both in o/, whence £ — y ¢ 0/, 2y € 0o, which shows that 2 — y
and zy are in p; . The same conclusion subsists if o’ C o”; therefore, o, is a ring.
Since every ring belonging to F contains o, 0, contains 0. We assert that po, £ o, .
In fact, were this not the case, then we could represent 1 in the form 1 =
T + -+ Tays, with zsep, yien (1 £ ¢ £ h). Each y; would belong to
some ring 0¥ ¢ F'. For each pair (i, 5), one of the rings o‘f’, 0 would contain
the other; since there are only a finite number of rings 0, it follows easily that
they would all be contained in one of them, say in o®. But then we would have
1 = Y hazgiepo™, whence po® = o*, which is impossible since 0™ ¢ F.
Thus we have po; 0, , whence 0, € F/, which proves that F is inductive.

Let © be a maximal ring in F; we shall prove that O is a V-ring. First we
show that any element in © which is =1 (mod pO) has an inverse in . Let @
be the set of these elements; it is clear that products of elements in @ are in @.
Let £’ be the set of elements of the form z¢g™*, with z ¢ ©, ¢ € @; then the formulas
z oz

q o
show that £’ is a ring. Since 1¢Q, O’ contains . We assert that 1 ¢ p'.
In fact, assume for a moment that

X
=5 T T = Tg -
q

N _
1=szz—' Z;€), Yie, q.-eQ (175 h).
fam] Ys .\
Setg=aq1 " @ ; :chen ge@Q, whence ¢ = 1 + 2?'.1 :c:-y:- , with z; e p, y: €D,
and we have ‘ ‘

h K
1= Z_:l Zs (’I’l @)Ys — ?_.; T yi € pO,

which is impossible. Thus, £’ belongs to F; since O is maximal, we have O’ = O,
whence, if g e Q, ¢ ' € O. Now, let u be any element of R not in O; then O[u] # O,
whence £Ju] ¢F and pOfu] = O[u]. It follows that we may represent 1 in the
form 1 = Y pozw', with ;e pO (1 £ 7 < n). Since 1 — 20 ¢ @, we may also
write 1 = %?.1 riu’ with zi = z:(1 — x0) " ¢ §O. We may furthermore assume
that, among all representations of 1 in this form, we have selected the one with the
lowest #; i.e., it is impossible to represent 1 in the form 1 = 2 i a{u’ with
n < nziepD (1 £ 4 < n'). Now, assume for a moment that u™ ¢D. ‘Then
we see in the same way that we can represent 1 in the form > yat with
y: € p;D; Q <is m); furthermore, we assume thag, among all representations
of 1 in this second form, we have selected the one with the smallest possible m.

> !’ —4
If n = m, we may write 4™ = D yiu" , whence

n—1

1= ziu'+ 20 (2; yﬁu””‘),

fmal
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which is impossible in virtue of our choice of 7. Exchanging the roles played by u
and %, we see in the same way that the assumption that n < m likewise leads to
an impossibility. Thus the assumption that «™ ¢ O leads to a contradiction,
and we have u ' ¢ O. Since PO # O, we have ©  R; therefore O is a V-ring.

Let P be the ideal of non-units of . Then P is a place of R; since pO = O,
an element of p cannot be a unit in O, whence p C P N o. Theorem 1 is thereby
proved.

REMARK 1. Neither the definition of a V-ring in R nor the proof of Theorem 1
makes any use of the fact that R is a field of algebraic functions of one variable.
It follows that our proof of Theorem 1 yields a result which is valid for any
pair of fields (K, R) such that K is a subfield of B.

RemARk 2. When R is a field of algebraic functions of one variable over K,
and when p is a prime ideal in o, it can be proved that the intersection PNois
necessarily equal to p; however, we shall not have to make use of this more
refined result.

CoroLLARY 1. Let R be a field of algebraic functions of one variable over a field K,

and let z,, - - - , x, be elements of R which are not all in K. Let a be the set of polyno-
mials F(Xy, - -+ , X,) in r letters with coefficients in K such that F (z, st %) =0,
Let &, --- , & be elements of K such that F(&, -+, &) = O for all Fe a. Then
there exists a place of R which is a common zero of £, — &, <+ , T, — & .

Set o = Klx,, -+, z,]; an element y of o can be represented in the form
P(z,, - - -, z,) where P is a polynomial in coefficients in K, and, if P(zy, - - -, z,) =
P'(zy, -+, ), then P — P'is in q. It follows that P(%,, - - - , &) has the same

value for all polynomials P such that y = P(x;, --- , z,). Let p be the set of
elements y in o for which this value is 0. Then p is clearly an ideal in o; it is >0
because it has only 0 in common with K. If P is a place of R such that p C P,
then P is a common zeroof 3, — &, -+, 2, — & .

CoroLLARY 2. Let R be a field of algebraic functions of one variable over a field K,
and let x, y be elements of R, not both constanits. Let F be an irreducible polynomial
with coefficients in K such that F(z, y) = 0. If £, 4 are elemenis of K such that
F(£, ) = 0, then there exists a place of R which is a common zero of * — £ and y — 1.

Assume for instance that z is not constant; then y is algebraic over K(z).
Let Y" + p(@)Y"™ + -+ + p,(z) be a polynomial in ¥ with coefficients in
K(x), irreducible in K(z)[Y], which admits y as a zero. We may write pi(z) =
Pi(z)/Q:(zx), where P; and Q; are polynomials with coefficients in K, relatively
prime to each other. Let @ be a least common multiple of @y , - - - , @, ; then it is
well known that Fi(X, ¥) = QX)Y" + 2 ki (QX)/Q(X)P(X)Y™" is-
irreducible in K[X, Y]. Let F’ be any polynomial in K[X, Y] such that F'(z, y) =
0; then F'(z, Y) is divisible by Fi(z, Y) in K(z)[¥]; from this and from the
irreducibility of F, it follows that F' is divisible by F; . In particular, we have
F = aF,, ae K, whence Fy(§, 9) = 0 and F'(£, ) = 0. Corollary 2 therefore
follows from Corollary 1.



