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Editorial Policy

§ 1. Lecture Notes aim to report new developments - quickly, informally, and at
ahigh level. The texts should be reasonably self-contained and rounded off. Thus
they may, and often will, present not only results of the author but also related
work by other people. Furthermore, the manuscripts should provide sufficient
motivation, examples and applications. This clearly distinguishes Lecture Notes
manuscripts from journal articles which normally are very concise. Articles
intended for a journal but too long to be accepted by most journals, usually do not
have this “lecture notes™ character. For similar reasons it is unusual for Ph. D.
theses to be accepted for the Lecture Notes series.

§ 2. Manuscripts or plans for Lecture Notes volumes should be submitted
(preferably in duplicate) either to one of the series editors or to Springer- Verlag,
Heidelberg . These proposals are then refereed. A final decision concerning
publication can only be made on the basis of the complete manuscript, but a
preliminary decision can often be based on partial information: a fairly detailed
outline describing the planned contents of each chapter, and an indication of the
estimated length, a bibliography, and one or two sample chapters - or a first draft
of the manuscript. The editors will try to make the preliminary decision as definite
as they can on the basis of the available information.

§ 3. Final manuscripts should preferably be in English. They should contain at

least 100 pages of scientific text and should include

- a table of contents;

- an informative introduction, perhaps with some historical remarks: it should be
accessible to a reader not particularly familiar with the topic treated;

- a subject index: as a rule this is genuinely helpful for the reader.

Further remarks and relevant addresses at the back of this book.
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Chapter 0

LY 0

Introduction

In this book we will study hypersurface quadrilateral singularities. Because the study of
them can be reduced to the study of elliptic K3 surfaces with a singular fiber of type Ig,
we will study such K3 surfaces, too. The combinations of rational double points that
can occur on fibers in the semi-universal deformations of quadrilateral singularities are
considered. We will show that the possible combinations can be described by a certain
law from the viewpoint of Dynkin graphs. This is equivalent to saying that the possible
combinations of singular fibers in elliptic K3 surfaces with a singular fiber of type Ig
can be described by a certain law using classical Dynkin graphs appearing in the theory
of semi-simple Lie groups.

In the appendix we explain that a similar description can be given for plane sextic
curves. The theory developed in this book provides a long list of singular points that
can occur on plane sextic curves. (Because of the complexity of the world of all plane
sextic curves, the list is, however, probably not complete.)

In this book we always assume that the ground field is the complex field C.

There are 6 types of hypersurface quadrilateral singularities (Arnold (1], [2]); each
of them has the following normal form of the defining function and the Milnor number
; all have modules number 2:

J3,0: 23 + az?y® + 9% + bzy” + 22, (4a® + 27 # 0),
un=16.

Z1 0 3y + az?y® + bry® + ¢y + 22, (4a3 + 27 # 0),
p=15.

Q200 T+ y2? + az?y? + bz’ + 2y, (a? # 4),
n=14.

Wio:  z'+ az?y® + brlyt + ¢ + 22, (a® # 4),
u=15.

Sio: zlz4yR?+ 0 +aydz+by'z, (a® # 4),
u =14

Ui 0: 3 + 222 + zy3 4 aydz + bytz, (a(a® + 1) #£0),
p=14.

Note that any connected Dynkin graph of type A, D or E corresponds to a singu-
larity on a surface called a rational double point (Durfee [6]).

Let X be a class of quadrilateral singularities. Let PC(X) denote the set of Dynkin
graphs G with components of type A, D or E only such that there exists a fiber ¥ in
the semi-universal deformation family of a singularity belonging to X satisfying the
following two conditions depending on G:

(1) Fiber Y only has rational double points as singularities.
(2) The combination of rational double points on Y corresponds to graph G.
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We will study set PC(X) for X = Js,0, Z1,0, @2,0, W1,0, S1,0 and Uy p.

For quadrilateral singularities we have important results due to Looijenga (Looi-
jenga [9]). They enable us to reduce the study of the above PC(X) to the study of
lattice embeddings. A Dynkin graph G belongs to PC(X) if, and only if, the root
lattice @Q(G) has an embedding into As satisfying certain conditions depending on X,
where A3 denotes the even unimodular lattice with signature (19, 3). (See Section 2.)
On the other hand, for lattice embeddings we have excellent arithmetic results due to
Nikulin (Nikulin [11]). With Nikulin’s results we can always determine whether or not
G belongs to PC(X). This is the viewpoint of Mr. F.-J. Bilitewski, who made the list
of PC(X) for X = J30, Z1,0 and Q2,0 in his dissertation. In this book we show that
his vast list has simple description from the view-point of the graph theory of Dynkin
graphs. Moreover, we generalize this result to the remaining 3 quadrilateral singularities
Wi,0, S1,0 and Uy . Also, some results on plane sextic curves can be obtained.

The theory developed in this book was derived from the theory of elementary and
tie transformations. These transformations are certain operations for Dynkin graphs.
Fundamental theories of these transformations have been developed in Urabe [16] and
in Urabe [18]. We will not repeat the descriptions in [16] and [18]. However, we believe
readers will be able to understand the theory put forth in this book.

Dynkin graphs of type A, B, C, D, E, F or G related to simple Lie groups are
used in our theory. Dynkin graphs associated with non-reduced root systems of type
BC are used as aids. Bourbaki [3] contains explanations of Dynkin graphs of type A,
B, C, D, E, F and G and root systems of type BC.

Let G be a connected Dynkin graph with r vertices. Recall that vertices in G have
one-to-one correspondence with members of the corresponding root basis. This root
basis is a basis of a certain Euclid space E of dimension r and consists of special vectors
called roots. The collection of all roots in E is called the root system R. We can choose
the normal inner product on E such that the longest root in R has length /2. Then,
any root in R has length v/2, 1, {/2/3 or 1//2.

Now, associated with a finite subset S of a Euclid space consisting of vectors with
length v/2, 1, \/2/3 or 1/4/2, we can draw a graph T by the following rules:

(1) Vertices in I" have one-to-one correspondence with vectors in S.
(2) Any vertex in I" has one of 4 different expressions depending on the length of the

corresponding vector in S.

length /2 1 2/3  1/V/2
®

expression o ° ©

(3) If two vectors a, @ € S are orthogonal, then we do not connect the corresponding
two vertices in I'. o * * 3. (x denotes one of o, e, (©), and ®.)

(4) If « and B € S are not orthogonal, then the corresponding two vertices in I' are
connected by a single edge. o * * .

(5) If @ and 8 € S are proportional, ie., 8 = ta for some real number ¢, then
the edge connecting the corresponding two vertices is replaced by a bold edge.
O — ﬂ
If S is a root basis of a finite root system, then the graph I' is the corresponding

Dynkin graph in our theory. A Dynkin graph is a finite union of connected Dynkin

graphs.
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If S is an extended root basis, i.e., the union of a finite root basis A and (—1) times
maximal roots associated with irreducible components of A, then the graph T is the
corresponding extended Dynkin graph.

Note here that our Dynkin graphs are slightly different from the standard Dynkin
graphs in Bourbaki [3]. Our graphs carry more information on the length of vectors
than the standard ones. Let G be a connected Dynkin graph in our sense. We can
produce the corresponding standard Dynkin graph by the following procedure:

(1) If G has a part like o e Or ® ®, replace it by o—=p0.

(2) If G has a part like o———(©), then replace it by o====0.

(3) Finally, replace all vertices by a small white circle o.

Also, applying the same procedure to an extended Dynkin graph in our theory, we get
the standard extended Dynkin graph.

A root having a length of v/2 is called a long root, and a root having a length
shorter than v/2 is called a short root.

For any connected Dynkin graph with only vertices o corresponding to long roots,
our graph in our definition coincides with the standard graph in Bourbaki (3].

See Section 5 for the exact explanation of Dynkin graphs.

To state theorems we need two definitions (Urabe [15], [16], [18]).

Definition 0.1. Elementary transformation: The following procedure is called an

elementary transformation of a Dynkin graph:

(1) Replace each connected component by the corresponding extended Dynkin graph.

(2) Choose in an arbitrary manner at least one vertex from each component (of the
extended Dynkin graph) and then remove these vertices together with the edges
issuing from them.

Definition 0.2. Tie transformation: Assume that by applying the following proce-
dure to a Dynkin graph G we have obtained the Dynkin graph G. Then, we call the
following procedure a tie transformation of a Dynkin graph:

(1) Attach an integer to each vertex of G by the following rule:

Let ai, oo, ..., ok be the root basis associated with a connected component G’ of
G. Let Y, ; nic; be the associated maximal root. Then, the attached integer to
the vertex corresponding to «; is n;.

(2) Add one vertex and a few edges to each component of G and make it into the
extended Dynkin graph of the corresponding type. Attach the integer 1 to each
new vertex.

(3) Choose, in an arbitrary manner, subsets A, B of the set of vertices of the extended
graph G satisfying the following conditions:

(a) ANB=0.
(b) Choose arbitrarily a component G” of the extended graph G and let V be the
set of vertices in G”. Let I be the number of elements in ANV. Let ny, ng, ...,
n; be the numbers attached to ANV. Also, let N be the sum of the numbers
attached to elements in BNV. (If BNV =@, N = 0.) Then, the greatest
common divisor of the [ + 1 numbers N, nj, ng, ..., ny is 1.
(4) Erase all attached integers.
(5) Remove vertices belonging to A together with the edges issuing from them.
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(6) Draw another new vertex called § corresponding to a long root. Connect 6 and
each vertex in B by a single edge.

Remark. After following the above procedure (1)—(6) the resulting graph G is often
not a Dynkin graph. We consider only the cases where the resulting graph G is a Dynkin
graph and then we call the above procedure a tie transformation.

The number #(B) of elements in the set B satisfies 0 < #(B) < 3.
Il=#ANV)>1

When the Dynkin graph G contains ax of connected components of type Ak, b of
components of type Dy, ¢, of components of type E,., d. of components of type By,
..., we identify the formal sum G = Y axAx + X biDi + Y cmEm + Y. dnBy -+ with
graph G.

The following is the first part of our main results.

Theorem 0.3. Consider one of J30, Z1,0, and Q2,0 as the class X of hypersurface
quadrilateral singularities. A Dynkin graph G belongs to PC(X) if, and only if, either
(1) or (2) of the following holds:

(1) G is one of the following exceptions.

(2) G can be made from one of the following essential basic Dynkin graphs by ele-
mentary or tie transformations applied 2 times (Four kinds of combinations — i.e.,
“elementary” twice, “tie” twice, “elementary” after “tie”, and “tie” after “elemen-
tary” — are all permitted.) and G contains no vertex corresponding to a short

root.
The essential basic Dynkin graphs:  The exceptions:
The case X = JS,O : Eg+ Fy 3A3+ 24,
The case X = Z,,0 : E7+ F4, Eg + BCj3 None
The case X = QQ]Q : Eg+ Fy,Eg + 3 3A3 + Ag

Example. Let us show that 2E7 and A7 + Dg are members of PC(J30).

Consider the Dynkin graph Eg + Fy first. This is the essential basic Dynkin graph
for J3,0. We apply a tie transformation to this graph. At the second step we have the
following graph:

2 4 6 5 4 3 2 1 1 2 3 4 2
a, ag ay

o0—o o o0—o0 oO——0—0 o——Oo0—O0—eo—e@

Set A = {1,064} and B = {ap,Bo}. We can check to determine if the condition on
G.C.D. is satisfied for each component. Under this choice we get the graph E7 + Bs as
the result of the tie transformation.



5

Now, we can apply a transformation to E7 + Bg again. At the start we have the
following graph:

If an elementary transformation is applied and if we erase the vertices 7 and dg, we
get graph A7 + Dg. If a tie transformation is applied and if we choose A = {0,686} and
B = {6}, we get graph 2E7.

By the above theorem one knows A7 + Dg, 2E7 € PC(J3).

Remark. In the above theorem type BC3 and type F» Dynkin graphs appear. We
explan them briefly here:

Following is an F; type graph: e———e. Since it is a subgraph of Fy, we call it
an Fy type Dynkin graph. The extended F3 type Dynkin graph is nothing more than
a triangle with three black circles e at three angles. The 3 coefficients of the maximal
root are 1, 1, and 1.

Let L = Zle Zv; be a positive definite unimodular lattice equipped with the
bilinear form ( , ) satisfying v? = (v;,v;) = 1 for 1 < i < k and (v;,v;) = 0 for @ # j.
Set Ry = {a € L | & = (a,a) = m}. The union R = R; U Ry is a root system of type
By, and A = {v1}U{—v; +vi1 | 1 <i < k} is the root basis of type Bx. The maximal
root is vg_1 + V-

Set ' = RU{2a | @ € R;}. This R’ is the root system of type BCk. It is
non-reduced, i.e., it has an element a € R’ with 2a € R’. The normalized bilinear form
(, ) for R isgivenby (, ) = %( , ). The root basis for R’ is the same A as above,

but here, v; has length 1/4/2 and —v; 4+ v;;; has length 1. The maximal root is 2vx,
which has length /2.

Following is the type BC3 Dynkin graph: @ ———e—e, while the following is
the extended type BC3 Dynkin graph: & ® . o. The coefficients of the
maximal root are 2, 2, 2, and 1 from the left.

Remark. Note the phenomenon called “exceptional deformations” pointed out in
Wall [25]. Let J3,0(a) be the subclass of the class of quadrilateral singularity J3 o with a
fixed value a of the parameter a in the above normal form of J3 9. By Wall, there exist
finite exceptional special values ag, such that the set PC(J30(a)) for any general value
a is a proper subset of PC(J3,(ag)). Wall’s exception seems to have no relation to our
exceptions in Theorem 0.3. Note that by our definition PC(J3,0) = J, PC(J3,0(a)).

For those who are interested in elliptic surfaces, we would like to explain the relation
between the above theorem and elliptic K3 surfaces (Kodaira [8]). Let ® : Z — C(= P1)
be an elliptic K3 surface. It has no multiple fibers. By Kodaira’s result we have an
elliptic K3 surface ®’ : Z’ — C’ with a section s : C' — Z’, &s = the identity on C’
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whose combination of singular fibers is same as that of ®. Therefore, we can assume
from the beginning that ® itself has a section. Then, we can associate each singular
fiber with a connected Dynkin graph of type A, D or E naturally.

Iy — Ap—1, If — Dpyy
o — 0, I — B
Ir— A, Ir— E,
IV —s Ay, IV*— Eg
Above symbols I, ..., IV* are Kodaira’s symbols corresponding to singular fibers of

elliptic surfaces.

Let G denote the formal sum of all connected Dynkin graphs associated with the
singular fibers of ®. Let PC be the set of all Dynkin graphs G obtained from elliptic
K3 surfaces ® : Z — C. Note that G has a component of type Dy if, and only if,
® has a fiber of type Ij. Now, by Looijenga [9] it is known that G + D4 belongs to
PC if, and only if, G belongs to PC(Js3,0). (See Section 2.) Therefore, one knows by
the above theorem that possible combinations of singular fibers in elliptic K3 surfaces
with a singular fiber of type Ij are subject to the law described above. For one X
of the other 5 types of quadrilateral singularities, the set PC(X) describes possible
combinations of singular fibers in elliptic K3 surfaces with a I§-fiber satisfying certain
additional conditions. (See Section 2.)

The list of all maximal graphs in PC(J3 ) with respect to the inclusion relation was
first given by F.-J. Bilitewski. Here, I wish to express my sincere thanks to Mr. Bilitewski
for showing me his list.

Bilitewski has given the following description for PC(Z1,0) and PC(Q2,0): First,
we consider PC(Z1,0). Set

Ml = {E67 E7a ES: AI}U {Dl ' l = 4757"'}
G1'={(G, Go) | G € PC(Js,0), Go € My, Gy is a component of G.}.

Consider an element (G, Go) € G1. We can write G = G” + Go. We associate G|, with
G in the following manner, depending on the type of Go. Then, we set G’ = G” + Gy:
Go— G
Eg— E, Dy— 3A,,
E7— D¢,  Ds— A3+ Ay,
EG_* A5, D[—>D1_2+A1 (126),
A — 0.

Let G1 be the set of all G’ obtained from elements (G, Go) € G1. Then, G = PC(Z1,0).
For PC(Q2,0) his description is like the following: Set

My = {Es, E7, Eg, Ay}
G2 = {(G, Go) | G € PC(J30),Go € M2,Gy is a component of G.}.
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For (G, Go) € G2, we can write G = G” + Go. Associating G with G in the following
manner, we set G’ = G” + Gy:

Go— G

Eg— FEg, Eg— 2A,,

E7—* A5, AQ—"’ 0

Let G} be the set of all G’ obtained from elements in G,. Then, G5 = PC(Q2,0)-

Bilitewski’s replacement depends on the theory of singular fibers in elliptic surfaces.
It is plain and easy to understand if the set PC(J30) is known.

To state the theorems for Wi, S1,0 and Uy, we must introduce another new
concept called “obstruction components”. Some of components of type Ax with k > 4
of a Dynkin graph are distinguished from the others as obstruction components and
they follow special rules. (See Definition 5.9 (2) and Theorem 5.11.)

Definition 0.4. When a component Gy of type Ax with k > 4 of the Dynkin graph
G is an obstruction component, Gy follows the below rules:

[The rule under an elementary transformation)

Assume that making the corresponding extended Dynkin graph G from G, and
erasing several vertices and edges issuing from them, we have obtained the Dynkin
graph G'._ 5 B
(1) Let Go be the component of G corresponding to Go. If the vertex erased from Gy

is unique, then the component G of G’ derived from Gy is of type Ax. We can

make this G an obstruction component. Also, we can make Gy a non-obstruction
component, if we so desire. _

(2) When two or more vertices are erased from Gy, any component of G’ derived from
éo is not an obstruction component.

(3) Obstruction components of G’ are only those obtained from the obstruction com-

ponents of G following the above rules (1) and (2).

[The rule under a tie transformation]

Assume that making the extended Dynkin graph G from G and choosing subsets A
and B of the set of vertices in G satisfying the condition, we have made the new Dynkin
graph G’ depending on A and B. Let Vj be the set of all vertices in the connected
component Gg of the extended Dynkin graph G corresponding to Go.

(1) Assume that the sets A and B satisfy the following condition #:

# VonB=0and VN A contains only a unique element.

Then, Vo — A is the set of vertices in a component Gj of G'. (Gj is also of type
Ag.) This Gj is necessarily an obstruction component of G’.

(2) When the sets A and B do not satisfy the condition #, any component of G’
containing a vertex belonging to Vy — A is not an obstruction component.

(3) Obstruction components of G’ are only those obtained from obstruction components
of G by following rules (1) and (2) above.

We can state the theorem for W) .
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Theorem 0.5. A Dynkin graph G belongs to PC(W1,0) if, and only if, G can be made
from one of the following basic Dynkin graphs with distinguished obstruction compo-
nents by elementary or tie transformations applied 2 times (Four kinds of combinations
— i.e., “elementary” twice, “tie” twice, “elementary” after “tie”, and “tie” after “ele-
mentary” — are all permitted.) and G contains no vertex corresponding to a short root
and no obstruction component:

The basic Dynkin graphs:
An, Bg+Gi Eg+Gy+ B, Er+Bs+Gi.
(A1 is the only obstruction component.)

In the above theorem the graph e with only one black vertex is called a type
B; Dynkin graph, while @ with one double vertex is called a type G;. Their extended
Dynkin graphs are and (O (© respectively. The coefficients of the maximal
root are 1 and 1 for both graphs.

Our main result for Sy is as follows.

Theorem 0.6. A Dynkin graph G belongs to PC(S1,0) if, and only if, G contains no

vertex corresponding to a short root and no obstruction component, and either following

(1) or (2) holds:

(1) G can be made from one of the following sub-basic Dynkin graphs by one elementary
transformation or one tie transformation:

The sub-basic Dynkin graphs:
Bio+ Ay, Bg+ Ay, FE7+ By,
Ag + Bs, Bs+ Asz+ As.

(No obstruction component.)

(2) G can be made from one of the following basic Dynkin graphs with distinguished
obstruction components by elementary or tie transformations applied 2 times (Four
kinds of combinations — i.e., “elementary” twice, “tie” twice, “elementary” after
“tie”, and “tie” after “elementary” — are all permitted.):

The basic Dynkin graphs:
A9+ BC,, Bg+ A;,, Es+ BC:, E;+BC;, FEg+ Bs,
(Ag is the only obstruction component.)

The last remaining case is U 0. We must introduce an additional new concept.

Recall that an extended Dynkin graph is associated with the extended root basis,
i.e., the root basis plus (—1) times maximal roots associated with an irreducible com-
ponent of the basis. Note here that if an irreducible root system contains roots with 2
kinds of different length, the maximal short root { is uniquely defined among shorter
roots depending on the root basis A. When the irreducible root system is the BCy type
with k > 2, the system contains roots with 3 different lengths and by ¢ we denote the
maximal root with length 1. ( is defined among roots with the middle length 1. We call
the union A®* = A U {—(} the dual extended root basis, and call the associated graph
the dual extended Dynkin graph.

For example, the dual extended Dynkin graph of type G2 is similar to the follow-

ingg. ©—©——o.
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For the irreducible root system whose roots are of the same length we define that
the dual extended Dynkin graph is equal to the extended Dynkin graph.

Definition 0.7. Dual elementary transformation: = The following procedure is called

a dual elementary transformation of a Dynkin graph:

(1) Replace each connected component by the corresponding dual extended Dynkin
graph.

(2) Choose, in an arbitrary, at least one vertex from each component (of the dual
extended Dynkin graph) and then remove these vertices together with the edges
issuing from them.

Definition 0.4. (Addition) Under a dual elementary transformation an obstruction
component follows the same rule as for an elementary transformation.

Theorem 0.8. A Dynkin graph G belongs to PC(Ui,0) if, and only if, G contains no

vertex corresponding to a short root and no obstruction component, and either (1), (2)

or (3) of the following holds:

(1) (Exceptions) G=FEg+ D4+ Ay, Eg+ Ay +3A1, Dy + 3As + Ay or 34, + 4A,.

(2) G can be made from one of the following basic Dynkin graphs with distinguished
obstruction components by elementary or tie transformations applied 2 times (Four
kinds of combinations — i.e., “elementary” twice, “tie” twice, “elementary” after
“tie”, and “tie” after “elementary” — are all permitted):

The basic Dynkin graphs:
Eg+ A2(3), E7:+ G2, Eg+ Az+ A2(3), As+ Ga.
(Asg is the only obstruction component.)

(3) G can be made from the following dual basic Dynkin graph by two transformations
one of which is a dual elementary transformation and the other is an elementary or
a tie transformation (Thus, only four kinds of combinations of transformations —
i.e., “dual elementary” after “elementary,” “elementary” after “dual elementary,”
“dual elementary” after “tie,” and “tie” after “dual elementary” — are permitted.):

The dual basic Dynkin graphs:
Eg+ G2. (No obstruction component.)

Remark. The A;(3) Dynkin graph in the above theorem is explained herewith.

We can consider a root system R = {a, 8, o+ (3, —a, —f8, —a — 3} with 6 roots
satisfying the conditions o = 8% = 2/3 and (a, 8) = —1/3. In this book, R is denoted
to be of type A2(3) (See Section 5.) since it becomes a root system of type Ay if the
bilinear form 3( , ) is given.

A = {a, B} is its root basis, and the Dynkin graph is as follows: @©——@©. The
extended type A2(3) Dynkin graph is a triangle with three double circles (© at three
angles. The 3 coefficients of the maximal root are all 1.

As for above PC(W1,0), PC(S1,0) and PC(U, ), Mr. Bilitewski informed me that
he had a complete listing of them.
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Now, apart from the above theorems, we can consider the set of all general elliptic
K3 surfaces. It is not difficult to formulate the corresponding theorem about combina-
tions of singular fibers in them. The basic Dynkin graphs in this case are 2Eg and D;s.
No sub-basic Dynkin graphs appear. Perhaps there are several exceptions such as for
J3,0 and Uip. Yet, not having given a great deal of consideration to this case we are
not certain.

I would like to give a theorem dealing with all elliptic K3 surfaces in a forthcoming
article.

Also, there exist similar theorems for 14 exceptional hypersurface singularities with
modules number 1 (Arnold [1], [2]). We would like to study them in a forthcoming
article.

Mr. Bilitewski informed that he had a complete listing of Dynkin graphs of PC(X)
for any one X of 14 exceptional hypersurface singularities.

Our theory seems to have two advantages over Nikulin’s arithmetic theory. First,
it gives a consistent view-point. Second, we can avoid long tiresome calculations in
determining all overlattices of lattices appearing in complicated cases in our problem.

The main ideas of this book are outlined here. (See also Section 1, Summary.)

The starting point is Looijenga’s result, which follows from the surjectivity of the
period mapping for K3 surfaces. The lattice P of rank 22 — p is defined for each one
X of 6 quadrilateral singularities. By his result our problem is reduced to show the
existence of an embedding S = P ® Q(G) — Aj of lattices satisfying certain conditions
(L1) and (L2), where G is a Dynkin graph. Q(G) is the root lattice of type G, and Ay
stands for the even unimodular lattice with signature (16 + N, N). If N > 1, then Ay
is unique up to isomorphism, and is isomorphic to Q(Es) ® Q(Fg) ® H®" . Here, Q(Fjs)
denotes the root lattice of type Eg and H denotes the hyperbolic plane, i.e., the even
unimodular lattice of rank 2 with signature (1, 1).

Next, we translate Looijenga’s conditions (L1) and (L2) to a simpler equivalent
condition. They are satisfied if, and only if, the induced embedding Q(G) < A3/P is
full and satisfies a certain condition related to obstruction components. Here, we say
that the embedding is full, if the root system in Q(G) including short roots and that in
the primitive hull of Q(G) coincide. Here is the essential reason we have to introduce the
concept of short roots. The condition “no short roots and no obstruction components”
implies conditions (L1) and (L2) are satisfied. Short roots play an interesting but
mysterious role in our theory.

We can apply the theory of elementary transformations and tie transformations
here. Let G’ be a Dynkin graph made from a given Dynkin graph G by one elementary
transformation or one tie transformation. Assume that a full embedding Q(G) — An/P
is given. Then, we can define another full embedding Q(G’) — An41/P. Note that the
suffix of A has increased by one. A direct summand H is added under the process of
one transformation.

Conversely, assume that we have a primitive isotropic vector u in Ay4+1/P in a
nice position with respect to any given full embedding Q(G’) — An,1/P. Here, we
say that u is in a nice position either if u is orthogonal to Q(G’) or for some root basis
A C Q(G’) and for some long root § € A u-a = 0 for any a € A with a # 6 and
u-0 = 1. (In the case of U; o we have to assume moreover that if u is not orthogonal to
Q(G"), then u-z € Z for every z € An/P.) Under this assumption we have a Dynkin



