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INTRODUCTION

A major concern throughout the history of elasticity has been with
problems dictated by the demands of engineering. Interest in the
construction of a theory for the deformation of elastic cylinders
dates back to Coulomb, Navier and Cauchy. Howsver, only Saint-
Venant has been able to give a solution of the problem.

The importance of Saint-~Venant's celebrated memoirs [132,133],
on what has long since become known as Saint-Venant's problem re-
quires no emphasis. To review the vast literature to which the work
contained in [132,133] has given impetus is not our intention. An
account of the historicsal developments as well as references to va=-
rious contributions, may be found in the books and in some of the
papers cited.

We recall that Saint-Venant's problem consists in determining
the equilibrium of a homogeneous and isotropic linearly elastic cy-
linder, loaded by surface forces distributed over its plane ends.
Saint-Venant proposed an approximaetion to the solution of the three-
dimensional problem, which only requires the solution of two-dimen-
sional problems in the cross section of the cylinder. Saint-Venant's
formulation leads to the four basic problems of extension, bending,
torsion and flexure. His analysis is founded on physical intuition
and elementary besm theory. Saint~Venant's extension, bending, tor—
tion, and flexure solutions are well-known (see, for example, Love
{981, Chapters 14,15 and Sokolnikoff [139], Chapter 4).

Saint-Venant's approach of the problem is based on a relaxed
statement in which the pointwise assignment of the terminal trac-—
tions is replaced by prescribing the corresponding resultant for-
ce and resultant moment. Justification of the procedure is twofold.
First, it is difficult in practice to determine the actual distri-
bution of applied stresses on the ends, although the resultant for-
ce and moment can be measured accurately. Second, one invokes Saint-
Venant's principle. This principle states, roughly speaking, that
if two sets of loadings are statically equivalent at each end, then
the difference in stress fields and strain fields are negligible,
except possibly near the ends. The precise meaning of Saint-Venant's
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bypothesis and its justification have been the subject of many stu-
dies, almost from the time of the original Saint-Venant's papers.
Reference to some of the esrly investigations of the question will
be found in [98],[139],[140]. In recent years important steps to-—
ward clarifying Ssint-Venant's principle have been made. The clas=-
sic paper in linear elasticity is by Toupin {146] (see also, 6.8
Roseman [128]), knowles [84]) and Fichera [39,40] for further impor=-
tant developments)e. For the history of the problem and the detai-
led ansalysis of various results on Saint-Venant's principle we re-
fer to the works of M¢E.Gurtin [47], GeFichera [38], C.O.Horgan
and J.K.Knowles [ 53].

The relexed Saint-Venant's problem continues to attract atten—
tion both from the mathematical and the technical point of view.

It is obvious that the relaxed statement of the problem fails
to characterize the solution uniquely. This fact led various
authors to estsblish charscterizations of Seint-Venant's solution.
Thus, Clebsch (24] proved thet Saint-Venant's solution can be de-
rived from the assumption that the stress vector on any plane nor-
mal tc the cross-—-sections of the cylinder is parallel to its ge-
nerators., In [155], Voigt rediscovered Saint-Venant's solution by
using another assumption regarding the structure of the stress
field. Thus, Saint-Venant's extension, bending and torsion solu-
tions are derived from the hypothesis that the stress field is in-
dependent of the axisl coordinate, and Saint-Venant's flexure so-
lution is obtained if the stress field depends on the axial coor-
dinate at most linearly.

E.Sternberg and J.K.Knowles [143] characterized Saint-Venant's
solutions in terms of certain associated minimum strain-energy
properties., Other intrinsic criteria thst distinguish Saint-
Venant's solutions among sll the solutions of the relasxed problem
were established in [79]. In [79], a rational scheme of deriving
Saint-Vensant's solutions is presented. The advantage of this me-
thod is that it does not involve sartificizl a priori assumptions.
The method permits to construct a solution of the relaxed Saint-
Venant's problem for other kinds of constitutive equations (ani=-
sotropic media, Cosserat continua, etc.) where the physicsl in-
tuition or semi-inverse method cannot be used.

In [148]-[150], C.Truesdell proposed a problem which, roughly



speaking, consists in the generalization of Saint-Venant's notion
of twist so as to apply to any solution of the torsion problem.
Recently an elegant solution of Truesdell's problem has been esta-—
blished by W.A.Day [25]. In [123], P.Podio-Guidugli studied Trues-
dell's problem rephrased for extension and pure bending. The case
of flexure was considered in [ 7?9]. The results of [25,123 ] are re-
lated to the results of Sternberg and Knowles [143] concerning the
minimum energy characterizations of corresponding  Saint-Venant's
solutions.

A generalization of the relexed Saint-Venant's problem consists
in determining the equilibrium of an elastic cylinder which - in
the presence of body forces - is subjected to surfsce tractions ar-
bitrsrily prescribed over the lateral boundary and to appropriate
stregs resultants over its ends. The study of this problem wss ini=-
tiated by Almanegi [ 1) and Michell [102] snd was developed in va-
rious later papers (see,for example, Sokolnikoff [139], Djenelidze
[29] and Hatiasbvili [49]).

As pointed out before, Saint-Venant®s results were established
within the equilibrium theory of homogeneous and isotropic elastic
bodies. A large number of papers ere concerned with the relsxed
Saint-Venant's problem for other kinds of elastic materisls (see,
for example, Lekhnitskii [96], Lomagkin [97], Brulin and R.K.T.Hsieh
[15] and Reddy end Venkatasubramenian [90]). References to recent
results are cited in the text. No attempt is made to provide a com-
plete list of works on Saint-Venant's problem. Neither the contents,
nor the list of works cited are exhaustive. Nevertheless, it is
hoped that the developments presented reflect the state of know-
ledge in the study of the problem,

The purpose of this work is to present some of tho recent re-—
sesrches on Saint-Venant's problem. An effort is made to provide a
systematic treatment of the subject.

Chapter 1 is concerned mainly with results where Saint-Venant's
solutions are involved. We give a rational method of construction
of these solutions and then we characterize them in terms of cer-
tain associsted minimum strain-energy properties. A study of Trues=—
dell's problem is presented. This chapter elso includes a proof of

Saint-Venant's principle.
In Chapter 2, an interesting scheme of deriving a solution of
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Almansi-Michell problem is presented. Almansi's problem, where the
body forces and the surface tractions on the laterzl boundary are
polynomials in the axigl coordinate, 1is also studied. The results
are used to study a stetical problem in the linear thermoelasti-
citye.

Chapter 3 is concerned with the relaxed Saint-Venant's problem
for anisotropic elastic bodies. We first estasblish a solution of
the foregoing problem, The method does not involve artificial s
priori assumptions and permits a treatment of the problem even for
nonhomogeneous bodies, where the elastic coefficients sre indepen-
dent of the axial coordinate. It is shown that the well-known
boundary-value problem for the torsion function derives from a spe-
cial problem of generalized plane strain. Then, minimum energy cha-
racterizations of the solutions sre presented. Also included in
this chapter is a study of Truesdell's problem.

Chapter 4 deals with the relaxed Saint-Venant's problem for he-
terogeneous elastic cylinders. We consider the case of s composed
cylinder when the generic cross-section is occupied by different
enisotropic solids. The problems of Almensi and Michell are also
studied. Applications to the linear thermoelastostatics are given.

In Chapter 5 we study Seint-Venant's problem within the linea-
rized theory of Cosserat elastic bodies. We first present s proof
of Saint-Venant's principle in the theory of Cosserst elasticity.
Then, s solution of the relaxed Saint-Venasnt's problem is derived.
Truesdell's problem and s theory of loaded cylinders are also stu-
diede Illustrative applications are presented.

A number of results included in this work have not appeared or
been discussed previously in literature.
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1, THE RELAXED SAINT-VENANT PROBLEM

l.1. Preliminsries

We refer to a bounded regular region B of three~dimensional Bucli-
dian space as the body (cf.M.E.Gurtin [477], Sect.5). We let B denote
the closure of B, call 3B the boundary of B, and designate by n the
outward unit normal of 9B. Letters marked by an underbar stand for
tensors of an order p 21, and if v has the order p, we write vij...k
(p subscripts) for the components of ¥ in the underlying rectangular
Cortesian coordinate frame. We shall emplay the ususl summation and
differentiation conventionst Greek subscripts sre understood to ran-
ge over the integers (1,2), whereas Latin subscripts - unless other-
wise specified = are confined to the range (1,2,3); summation over
repeated subscripts is implied and subscripts preceded by a comma
denote pertial differentiastion with respect to the corresponding
Certesian coordinate,.

We assume that the body occupying B is a lineerly elsestic mate-
rial. Let u be s displacement field over B. Then

E(u) = symVu ,

is the strain field associated with u. Here V u denotes the displa-

cemsent grsdient and (sym‘Vg)ij = (ui j + uj i)/2. The stress-displa-
? ’

cement relation may be written in the form

S(u) = ¢[Vul. (1.1)

Here S(u) is the stress field associated with u, while C stands for
the elsgsticity field. We assume that C is positive~definite, symme-
tric, and smooth on B. For the particulsr case of the isotropic e-

lestic medium the tensor field C admits the representation

Gy 4kt = 2955040 . p (gikgjv, SRR PO RS
where A and }L are the Lamé moduli and Sij is the Kronecker deltase.

We call a vector field u an equilibrium displacement field for B
if ueCl(@E)NC3(B) and



div S(u) = 0 , (1.3)
holds on Be Clearly, (div §(g))ij = (Sij(g))’j.
Let s(u) be the surface traction at regular points of OB corres-
ponding to the stress field S(u) defined on B, i.e.
s(u) = S(ua . (1.4

The strain energy U(u) corresponding to a smooth displacement
field u on B is (cf.[47], Sect.32)

UCa) = %év u-c(Vulav . (1.5)

In the following, two displacement fields differing by an (infini-
tesimal, rigid displscement will be regarded identical.
The functional U(+) generates the bilinear functional

W clvyjer .
B

U(E,Y_) =

! oy

The set of smooth fields over B can be made into a real vector
space with the inner product

<u,v>=2 U,y . (1.6)
This inner product generates the energy norm

Tail =<uu> . 1.7)

For any egquilibrium displacement fields u and v, one has (cf.
[47] ’ Sect. 30)

Cayy = § sweuae, (1.8)
which implies the well known relation

S s(u)-v da = S s(v)-u da . (1.9,
0B 2B



l.2. Properties of the Solutions to the
Relaxed Sgint-Venant Problem

We proceed now to Saint-Venant's problem and for this purpose stipu=-
late that the region B from here on refers to the interior of a right
cylinder of 1length h with open cross-section 2. and the lste—
ral boundary TT . The rectangular Cartesisn coordinate frame is sup-
posed to be chosen in such a way that the xa-axis is parallel to the
generators of B end the x,0x, plane contains one of the terminal
cross-sections. We denote by 2;1 and 2.2, respectively, the cross=
section located at x3 = O and Xz = h. We assume that the generic
cross=section > 1is a simply connected regular region. We denote by
[ the boundary of Z .

Seint-Venant's problem consists in the determination of an equi-
librium displacement field u on B, subject to the requirements

s(u) =0 on TT, s(u) = g(“) on 2:“(u =1,2) , (1.10)

whare g(“> is g vector=valued function preassigned on 2;. Necessary
conditions for the existence of a solution to this problem are given
by
S§(1>da+ S_s_(z)da=9, S)_t_Xgl)da+ S X_s2)da=9,
24 ZZ 24 zz
where x is the position vector of a point with respect to O.
Under sultable smoothness hypotheses on [' and on the given for-
ces, a solution of Saint-Venant's problem exists (cfe. Fichera [37]).
In the relsxed formulation of Saint-Venant's problem the condi-

tions (1.10) are replaced by

s(u) = on [T , R(u) = F , H(u =M, (1.11)

[e}

where F and M are prescribed vectors representing the resultant for-
ce and the resultant moment about O of the tractions acting on le.
Accordingly, R(+) and H(-) are the vector-valued linear functionals
defined by

Bw = § s(wda, H@W = { zXs(waa. (1.12)
= Z



If 8“? is the two-dimensional alternstor, (1.12) appears as
Rl(l_l.) = (= Ssji(g)da'

Z

(1.13)

Hu(g) ="Séo(r5x(gs53(}_’:)d8v H5(5> =—S£°(Px°(s5(3<g)da .
b3 24

The necessary conditions for the existence of a solution to Saint-

A

Venant problem lead to the following relations, which are needed
subsequently

SS31(E)da = =R; (w) , g&dpdeB(}(g)da = =Hz(w),
2 = (1.14)
S’&SBB(B)da = = hR_(w) +&°‘PHP(Q .

2

It is obvious that the relaxed statement of the problsm fails to
characterize the solution uniquely.

By a solution of the relaxed Saint-Venant's problem we mean any
equilibrium displacement fisld that satisfies (1.11).

We denote by (P) the relaxed Saint-Venant's problem corresponding
to the resultants F and M. Let K(F,M) denote the class of solutions
to the probleam (P).

The classification of the relaxed problem rests on various assump-
tions concerning the resultants F and M. Throughout this work it is
convenient to use the decomposition of the relaxed problem into pro-
blems (Pl) and (PE) characterized by

(P;)  (extension-bending-torsion) : F

1"
(@)
-

ol

(P2) (flexure) v Fy o= M; =0,

For further economy it is helpful to denote by KI(F3,M1,M2,M3) the
class of solutions to the problem (Pl) and by KII(Fl’FZ) the class
of solutions to the problem (PZ)‘ We assume for the remainder of
this chapter that the material is homogeneous and isotropice

Let 55 denote the set of all equilibrium displacement fields u
that satisfy the condition s(u) = O on the lateral boundary. The
next theorem will be of future use.



ITheorem l.1. [79]. If ge% and u 3€ Cl(-ﬁ), then u 36%) and
’ ?

5(5’5) = o : ) Hd(},l_’_a) = 8dPR(5(E) b H5(E’3) = On (1.15)

Proofe The first assertion follows at once from the fact that

S(u 3) ='35(u)/6x5 and the proposition: if u is an elastic displace-
ment field corresponding to null body forces, then so also is u k=
—'b_/axk (cf.[47],Sect.42)., Next, with the aid of the equatlons of
equilibrium (1l.3), we find that

s3i(3’3) = (531(2))’5 = —(Sfi(‘_l)),g )

Emp"{ssz;a(“ 5)= =& PxP(SY3(g)),§= -E“P[(IPS§’3(E))’§ - SPB(E)] ,

& X5 (u _-Sx u =-£ (xb u).
By (1.13), the divergence theorem, and the symmetry of S we arrive
at

5(2’3) = Ss(u)ds,

s (u)ds + E. (u), (1.16)

©epp" el

P

i, = Eagraspas
r

The desired result follows from (l.16) and hypothesis. O

Since u is an equilibrium displacement field, u is analytic (cf.
[47], Secte42)s Theorew 1.1 has the following immediate consequences:

Gorollary 1.1, If u ek (Fj,M,N,,U;) and g’3ecl(§), then g’aeg
and
3(2’5) =0, 5(2’3) =0.

Corollary 1.2, If ueK (F),F,) and u z€ cl(B), then

a 3€Kp(0,Fy,~F1,0).



Corollary 1.3, If u c® ana (Ong/'axx;ecl(ﬁ), then 'bng/'éx% P

and

'bn fan
=) = 0 H

- ) =0 54 KK

g( n
3

le3. A Method of Construction of Saint-Venant's Solutions

Corollary l.1 allows us to establish a simple metbod of deriving
Saint-Venant's solution to the problem (Pl). Let Q be the class of
solutions to the relaxed Saint-Venant's problem corresponding to

F =0 and M= 0. We note that if u €K (P, ,M,,N5) and 3,3gcl(§),
then by Corollary 2.1, g’3e Qe Let us note thet a rigid displacement
field belongs to Qe It is natural to enqguire whether there exists a
solution v of the problem (Pl) such that !,3 is a rigid displacement
field. This question is settled in the next theorem.

Theorem 1l.2. Let geCl(B)f\Cz(B) be a vector field such that ¥ ; is
’

a rigid displacement field. Then v is a solution of the problem (Pl)

if and only if v is Saint-Venant's solution.

Proof, Let 1eCl(§)f\Cz(B) be & vector field such that
‘_”3 = +P_>XX_ ’ (1.17)
where K and P_ are constant vectors. Then it follows that

1.18

V3 (8% + agX, + :35)>c3 + w3(xl,x2),

except for an additive rigid displacement field. Here w is an arbi=-
trary vector field independent of X3, and we have used the notations
8y = Coufler 83 =%z 8y = 33 « Let us prove that the functions wy
and the constants as(s=1,2,3,4) can be determined so that

!eK'I(FZa’Ml'M?M})' The stress—displacement relations imply that

S (v) =x(ax, + a;)8 (w),
“p g5 %" F (1.19)

834D = plwg o = 845«1?’( )s S53(W=(x+ 2;u)(a§ " 83)+>‘w§.§’ :



where
T (W) -M(w ) +8 W (1.20)
AN S e o
The equations of equilibrium end the condition on the lateral toun-
dary reduce to

o(P(y)) (5 +f =0 on 2 5 0((5(3)[1[3 = p, on I (1.21)
dw
Dw5 =0 on 2, ﬁi aqg“(’) P (1.22)
where
fg( =A8_ s P = }\(agx§ + aj)no( s (1.23)

The reletions (1.,20),(1.21) and (1.23) constitute 3 two-dimensional
boundary-value problem (cf.[47], Sect. #45). The necessary and suffi-
cient conditions to solve this problem are

gfdda + g pids =0, g x f da + ds = 0 , (1.24)

& X, P
APy gckc(
g Pt p PP
It follows from (l.23) and ths divergence theorem that the conditions
(le24) are satisfied. We observe that the boundary-value problem
(l.21) is satisfied if one chooses

(®) = -Nax, + a:)& .
aP ¢ S 5 mp
Clearly, the above stresses satisfy the compatibility condition. It
follows from (1.20) thst

W1 W= (a x + 83) » Wy ot Wy = 0.

&.+/A

The integration of these equations yields

LW alwg) + aawf) + 33‘”(0?)
whore
WEP) = 9(2 X xggL(P X XP), w( ) - =3x_ (1.25)

modulo a plane rigid displacement. Here vV designates Poisson's ratio.
It follows from (l.22) that Wy = 5419, where the function <€ is
characterized by

A(on onz'((%(ﬁn-:e nx, on | . (1.26)



Clearly, the vector field v can be written in the form

4
v = J@l axd) (1.27)

where the vectors g(j) (j=1,2,3,4) are defined by

P b o o s e,
3) _ (3 (3 (4) (4) (1+268)
Vo( = Wo( N V5 = XB ’ Vo( = EPdXFXB, V5 = (_?

We note that 1(3)6:&5 (j=1,2,%,4)e The conditions on the termihal
cross-section 2:1 furnish the following system for the unknown
constants

h(]:o(‘3 P+ -AX 83> -80((3 (3 ’

EA(alx1 + ayX 2 + 83> = - F5 , (1.29)
MmDay = - Mz

(¢}
&<

the centroid of Zil, K designates Young's modulus, and

where A is the area of the cross-section, X~ are the coordinates of

= da, D= \( I3 Jda . (1.30
o((} ;d(za éxx+°‘["‘°’*(f(5a )

If the rectangular Cartesisn coordinate frame is chosen in such s
way that the X —8Xes are principal centroidal axes of the cross-
section Z‘l’ then (1.27) and (1.29) lead to the well-known Saint-
Venant solution. 0

We present Ssint-Venant's solutions, which are needed subsequently.

i) Saint-Venant's extension solution:

Vv = 53!(3) N v§3) = _QX& ’ vgB) = X3

(1.31)
8 (v) =0, 850((1) =0, 853(!) = E33 ’

Fz = -BA az . (1.32)

The relation (l.32) is known as Saint-Venant's formula for extension.



ii) Saint-Venant's bending solutiont

2
v = alz(l) " v&l) = %(Oxg -Vx = x%),

vél) % ..Qxlx2 ’ vgl) = XXz (1.33)
S“F(ZD =0, 530((.‘_’) =0, 535(1) = Ealxl ’
where
M2 = EIllal ° (1034)

The relation (ls34) is called Saint-Venant's formula for bendinge.

iii) Saint-Venant's torsion solutiont

(1.35)
50(‘5(1) =0, 855 = 0, 55,(W :’/Aab’((f,d-iqug),
where
M3 = -fA-Daq_ . (1.36)

The constent a, is known ss specific angle of twist, and fAD is
called the torsionsl rigidity.
The relation (1l.36) is known as Ssint-Venant's formula for torsion.
Let us note that the vectors g(j) (j=1,2,3,4) defined by (1.27)
depend only on the cross-section and the elasticity field. Let 3 be
the four-dimensionsl vector (31,82,83,84). We will write 1{%} for
the displacement vector v defined by (1l.27), indicating thus its de-
pendence on the constants ag (82152;3,4)s
In view of Corollaries l.1l, le2 and Theorem l.2 it is natural to
seek a solution of the problem (P2) in the form
-
u® = g g{g}dxj + v{&l+ W, (1e37)
o

where b = (bl’bz’bﬁ'bq) and &= (cl,cz,c5,c4) are two constant four-
dimensional vectors, and w° is a vector field independent of Xy such
that w’e cl(i)f\c2(z).

Theorem l.3. The vector field go defined by (l.37) is a solution of



