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Preface

The purpose of this book is to provide a unified, insightful, and modern
treatment of linear optimization, that is, linear programming, network flow
problems, and discrete linear optimization. We discuss both classical top-
ics, as well as the state of the art. We give special attention to theory, but
also cover applications and present case studies. Our main objective is to
help the reader become a sophisticated practitioner of (linear) optimiza-
tion, or a researcher. More specifically, we wish to develop the ability to
formulate fairly complex optimization problems, provide an appreciation
of the main classes of problems that are practically solvable, describe the
available solution methods, and build an understanding of the qualitative
properties of the solutions they provide.

Our general philosophy is that insight matters most. For the sub-
ject matter of this book, this necessarily requires a geometric view. On
the other hand, problems are solved by algorithms, and these can only
be described algebraically. Hence, our focus is on the beautiful interplay
between algebra and geometry. We build understanding using figures and
geometric arguments, and then translate ideas into algebraic formulas and
algorithms. Given enough time, we expect that the reader will develop the
ability to pass from one domain to the other without much effort.

Another of our objectives is to be comprehensive, but economical. We
have made an effort to cover and highlight all of the principal ideas in this
field. However, we have not tried to be encyclopedic, or to discuss every
possible detail relevant to a particular algorithm. Our premise is that once
mature understanding of the basic principles is in place, further details can
be acquired by the reader with little additional effort.

Our last objective is to bring the reader up to date with respect to the
state of the art. This is especially true in our treatment of interior point
methods, large scale optimization, and the presentation of case studies that
stretch the limits of currently available algorithms and computers.

The success of any optimization methodology hinges on its ability to
deal with large and important problems. In that sense, the last chapter,
on the art of linear optimization, is a critical part of this book. It will, we
hope, convince the reader that progress on challenging problems requires
both problem specific insight, as well as a deeper understanding of the
underlying theory.
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In any book dealing with linear programming, there are some impor-
tant choices to be made regarding the treatment of the simplex method.
Traditionally, the simplex method is developed in terms of the full simplex
tableau, which tends to become the central topic. We have found that the
full simplex tableau is a useful device for working out numerical examples.
But other than that, we have tried not to overemphasize its importance.

Let us also mention another departure from many other textbooks.
Introductory treatments often focus on standard form problems, which is
sufficient for the purposes of the simplex method. On the other hand, this
approach often leaves the reader wondering whether certain properties are
generally true, and can hinder the deeper understanding of the subject. We
depart from this tradition: we consider the general form of linear program-
ming problems and define key concepts (e.g., extreme points) within this
context. (Of course, when it comes to algorithms, we often have to special-
ize to the standard form.) In the same spirit, we separate the structural
understanding of linear programming from the particulars of the simplex
method. For example, we include a derivation of duality theory that does
not rely on the simplex method.

Finally, this book contains a treatment of several important topics
that are not commonly covered. These include a discussion of the col-
umn geometry and of the insights it provides into the efficiency of the
simplex method, the connection between duality and the pricing of finan-
cial assets, a unified view of delayed column generation and cutting plane
methods, stochastic programming and Benders decomposition, the auction
algorithm for the assignment problem, certain theoretical implications of
the ellipsoid algorithm, a thorough treatment of interior point methods,
and a whole chapter on the practice of linear optimization. There are
also several noteworthy topics that are covered in the exercises, such as
Leontief systems, strict complementarity, options pricing, von Neumann'’s
algorithm, submodular function minimization, and bounds for a number of
integer programming problems.

Here is a chapter by chapter description of the book.

Chapter 1: Introduces the linear programming problem, together with
a number of examples, and provides some background material on linear
algebra.

Chapter 2: Deals with the basic geometric properties of polyhedra, focus-
ing on the definition and the existence of extreme points, and emphasizing
the interplay betwen the geometric and the algebraic viewpoints.

Chapter 3: Contains more or less the classical material associated with the
simplex method, as well as a discussion of the column geometry. It starts
with a high-level and geometrically motivated derivation of the simplex
method. It then introduces the revised simplex method, and concludes
with the simplex tableau. The usual topics of Phase I and anticycling are
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also covered.

Chapter 4: It is a comprehensive treatment of linear programming du-
ality. The duality theorem is first obtained as a corollary of the simplex
method. A more abstract derivation is also provided, based on the separat-
ing hyperplane theorem, which is developed from first principles. It ends
with a deeper look into the geometry of polyhedra.

Chapter 5: Discusses sensitivity analysis, that is, the dependence of so-
lutions and the optimal cost on the problem data, including parametric
programming. It also develops a characterization of dual optimal solutions
as subgradients of a suitably defined optimal cost function.

Chapter 6: Presents the complementary ideas of delayed column gen-
eration and cutting planes. These methods are first developed at a high
level, and are then made concrete by discussing the cutting stock prob-
lem, Dantzig-Wolfe decomposition, stochastic programming, and Benders
decomposition.

Chapter 7: Provides a comprehensive review of the principal results and
methods for the different variants of the network flow problem. It contains
representatives from all major types of algorithms: primal descent (the
simplex method), dual ascent (the primal-dual method), and approximate
dual ascent (the auction algorithm). The focus is on the major algorithmic
ideas, rather than on the refinements that can lead to better complexity
estimates.

Chapter 8: Includes a discussion of complexity, a development of the el-
lipsoid method, and a proof of the polynomiality of linear programming. It
also discusses the equivalence of separation and optimization, and provides
examples where the ellipsoid algorithm can be used to derive polynomial
time results for problems involving an exponential number of constraints.

Chapter 9: Contains an overview of all major classes of interior point
methods, including affine scaling, potential reduction, and path following
(both primal and primal-dual) methods. It includes a discussion of the
underlying geometric ideas and computational issues, as well as convergence
proofs and complexity analysis.

Chapter 10: Introduces integer programming formulations of discrete
optimization problems. It provides a number of examples, as well as some
intuition as to what constitutes a “strong” formulation.

Chapter 11: Covers the major classes of integer programming algorithms,
including exact methods (branch and bound, cutting planes, dynamic pro-
gramming), approximation algorithms, and heuristic methods (local search
and simulated annealing). It also introduces a duality theory for integer
programming.

Chapter 12: Deals with the art in linear optimization, i.e., the process
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of modeling, exploiting problem structure, and fine tuning of optimization
algorithms. We discuss the relative performance of interior point meth-
ods and different variants of the simplex method, in a realistic large scale
setting. We also give some indication of the size of problems that can be
currently solved.

An important theme that runs through several chapters is the model-
ing, complexity, and algorithms for problems with an exponential number
constraints. We discuss modeling in Section 10.3, complexity in Section 8.5,
algorithmic approaches in Chapter 6 and 8.5, and we conclude with a case
study in Section 12.5.

There is a fair number of exercises that are given at the end of each
chapter. Most of them are intended to deepen the understanding of the
subject, or to explore extensions of the theory in the text, as opposed
to routine drills. However, several numerical exercises are also included.
Starred exercises are supposed to be fairly hard. A solutions manual for
qualified instructors can be obtained from the authors.

We have made a special effort to keep the text as modular as possible,
allowing the reader to omit certain topics without loss of continuity. For
example, much of the material in Chapters 5 and 6 is rarely used in the
rest of the book. Furthermore, in Chapter 7 (on network flow problems), a
reader who has gone through the problem formulation (Sections 7.1-7.2) can
immediately move to any later section in that chapter. Also, the interior
point algorithms of Chapter 9 are not used later, with the exception of
some of the applications in Chapter 12. Even within the core chapters
(Chapters 1-4), there are many sections that can be skipped during a first
reading. Some sections have been marked with a star indicating that they
contain somewhat more advanced material that is not usually covered in
an introductory course.

The book was developed while we took turns teaching a first-year
graduate course at M.I.T., for students in engineering and operations re-
search. The only prerequisite is a working knowledge of linear algebra. In
fact, it is only a small subset of linear algebra that is needed (e.g., the
concepts of subspaces, linear independence, and the rank of a matrix).
However, these elementary tools are sometimes used in subtle ways, and
some mathematical maturity on the part of the reader can lead to a better
appreciation of the subject.

The book can be used to teach several different types of courses. The
first two suggestions below are one-semester variants that we have tried at
M.L.T., but there are also other meaningful alternatives, depending on the
students’ background and the course’s objectives.

(a) Cover most of Chapters 1-7, and if time permits, cover a small number
of topics from Chapters 9-12.

(b) An alternative could be the same as above, except that interior point
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algorithms (Chapter 9) are fully covered, replacing network flow prob-
lems (Chapter 7).

(¢) A broad overview course can be constructed by concentrating on the
easier material in most of the chapters. The core of such a course
could consist of Chapter 1, Sections 2.1-2.4, 3.1-3.5, 4.1-4.3, 5.1, 7.1-
7.3, 9.1, 10.1, some of the easier material in Chapter 11, and an
application from Chapter 12.

(d) Finally, the book is also suitable for a half-course on integer pro-
gramming, based on parts of Chapters 1 and 8, as well as Chapters
10-12.

There is a truly large literature on linear optimization, and we make
no attempt to provide a comprehensive bibliography. To a great extent, the
sources that we cite are either original references of historical interest, or
recent texts where additional information can be found. For those topics,
however, that touch upon current research, we also provide pointers to
recent journal articles.

We would like to express our thanks to a number of individuals. We
are grateful to our colleagues Dimitri Bertsekas and Rob Freund, for many
discussions on the subjects in this book, as well as for reading parts of
the manuscript. Several of our students, colleagues, and friends have con-
tributed by reading parts of the manuscript, providing critical comments,
and working on the exercises: Jim Christodouleas, Thalia Chryssikou,
Austin Frakt, David Gamarnik, Leon Hsu, Spyros Kontogiorgis, Peter Mar-
bach, Gina Mourtzinou, Yannis Paschalidis, Georgia Perakis, Lakis Poly-
menakos, Jay Sethuraman, Sarah Stock, Paul Tseng, and Ben Van Roy.
But mostly, we are grateful to our families for their patience, love, and
support in the course of this long project.

Dimitris Bertsimas
John N. Tsitsiklis
Cambridge, January 1997
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2 Chap. 1  Introduction

In this chapter, we introduce linear programming, the problem of mini-
mizing a linear cost function subject to linear equality and inequality con-
straints. We consider a few equivalent forms and then present a number
of examples to illustrate the applicability of linear programming to a wide
variety of contexts. We also solve a few simple examples and obtain some
basic geometric intuition on the nature of the problem. The chapter ends
with a review of linear algebra and of the conventions used in describing
the computational requirements (operation count) of algorithms.

1.1 Variants of the linear programming
problem

In this section, we pose the linear programming problem, discuss a few
special forms that it takes, and establish some standard notation that we
will be using. Rather than starting abstractly, we first state a concrete
example, which is meant to facilitate understanding of the formal definition
that will follow. The example we give is devoid of any interpretation. Later
on, in Section 1.2, we will have ample opportunity to develop examples that
arise in practical settings.

Example 1.1 The following is a linear programming problem:

minimize 2z; — T2 + 4x3
subject to  z1 + 2 + x4 < 2
3.’172 - T3 =5
z3 + 24 = 3
&Iy 2 0
I3 S 0

Here z1, x2, x3, and x4 are variables whose values are to be chosen to minimize
the linear cost function 2z, — x2 + 4x3, subject to a set of linear equality and
inequality constraints. Some of these constraints, such as z; > 0 and z3 < 0,
amount to simple restrictions on the sign of certain variables. The remaining
constraints are of the form a’x < b, a’x = b, or a’x > b, where a = (a1, a2, a3, a)
is a given vector', x = (z1, 2,23, 24) is the vector of decision variables, a'x is
their inner product Zf:l a;z;, and b is a given scalar. For example, in the first
constraint, we have a = (1,1,0,1) and b = 2.

We now generalize. In a general linear programming problem, we are
given a cost vector ¢ = (c1,...,¢,) and we seek to minimize a linear cost
function ¢’x = 3.7 | ¢;z; over all n-dimensional vectors x = (z1,...,z,),

! As discussed further in Section 1.5, all vectors are assumed to be column vectors, and
are treated as such in matrix-vector products. Row vectors are indicated as transposes
of (column) vectors. However, whenever we refer to a vector x inside the text, we
use the more economical notation x = (x1,...,x,), even though x is a column vector.
The reader who is unfamiliar with our notation may wish to consult Section 1.5 before
continuing.
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subject to a set of linear equality and inequality constraints. In particular,
let M,, M, M; be some finite index sets, and suppose that for every i in
any one of these sets, we are given an n-dimensional vector a; and a scalar
b;, that will be used to form the ith constraint. Let also N; and Ny be
subsets of {1,...,n} that indicate which variables z; are constrained to be
nonnegative or nonpositive, respectively. We then consider the problem

minimize c¢'x

subject to alx > b;, 1€ My,
a/x < b;, 1€ M.
i = o (1.1)
ajx = b, 1 € Ms;,
€Ty > 07 ]E Nla
T; < 0, ] € Nos.
The variables z1,...,x, are called decision variables, and a vector x sat-

isfying all of the constraints is called a feasible solution or feasible vector.
The set of all feasible solutions is called the feasible set or feasible region.
If j is in neither N; nor Nj, there are no restrictions on the sign of z;, in
which case we say that x; is a free or unrestricted variable. The function
c’x is called the objective function or cost function. A feasible solution x*
that minimizes the objective function (that is, ¢’x* < ¢x, for all feasible x)
is called an optimal feasible solution or, simply, an optimal solution. The
value of ¢/x* is then called the optimal cost. On the other hand, if for
every real number K we can find a feasible solution x whose cost is less
than K, we say that the optimal cost is —oco or that the cost is unbounded
below. (Sometimes, we will abuse terminology and say that the problem is
unbounded.) We finally note that there is no need to study maximization
problems separately, because maximizing ¢'x is equivalent to minimizing
the linear cost function —c¢’x.

An equality constraint a'x = b; is equivalent to the two constraints
ajx < b; and a)x > b;. In addition, any constraint of the form a/x < b; can
be rewritten as (—a;)’x > —b;. Finally, constraints of the form z; > 0 or
x; < 0 are special cases of constraints of the form a/x > b;, where a; is a
unit vector and b; = 0. We conclude that the feasible set in a general linear
programming problem can be expressed exclusively in terms of inequality
constraints of the form a/x > b;. Suppose that there is a total of m such
constraints, indexed by i = 1,...,m, let b = (by,...,b,,), and let A be the

m x n matrix whose rows are the row vectors a/,...,a/, , that is,
— @ —
A= .
— &, —
Then, the constraints ajx > b;, i = 1,...,m, can be expressed compactly

in the form Ax > b, and the linear programming problem can be written
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as
minimize c¢'x

subject to Ax > b. (1.2)

Inequalities such as Ax > b will always be interpreted componentwise; that
is, for every i, the ith component of the vector Ax, which is alx, is greater
than or equal to the ith component b; of the vector b.

Example 1.2 The linear programming problem in Example 1.1 can be rewrit-
ten as

minimize 2z, — T2 + 4x3
subject to —x; — x2 — x4 > =2
3z2 — 3 > 5
— 3z2 + z3 > -5
z3 + x4 =2 3
Ty > 0
— 3 > 0,

which is of the same form as the problem (1.2), with ¢ = (2, —1,4,0),

-1 -1 0 -1
0 3 -1 0
0 -3 1 0
ke 0 0 1 1]’
1 0 0 0
0 0 -1 0
and b = (-2,5,-5,3,0,0).
Standard form problems
A linear programming problem of the form
minimize c¢'x
subject to Ax = b (1.3)
x > 0,

is said to be in standard form. We provide an interpretation of problems in
standard form. Suppose that x has dimension n and let A|,..., A, be the
columns of A. Then, the constraint Ax = b can be written in the form

i Ai.Ti =b.

1=1

Intuitively, there are n available resource vectors Aj,..., A, and a target
vector b. We wish to “synthesize” the target vector b by using a non-
negative amount x; of each resource vector A;, while minimizing the cost
ZT:] c;z;, where ¢; is the unit cost of the ith resource. The following is a
more concrete example.
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Example 1.3 (The diet problem) Suppose that there are n different foods
and m different nutrients, and that we are given the following table with the
nutritional content of a unit of each food:

food1 --- foodn
nutrient 1 ai e A1y
nutrient m Am1 wo Aynn

Let A be the m x n matrix with entries a;;. Note that the jth column A;
of this matrix represents the nutritional content of the jth food. Let b be a
vector with the requirements of an ideal diet or, equivalently, a specification of
the nutritional contents of an “ideal food.” We then interpret the standard form
problem as the problem of mixing nonnegative quantities z; of the available foods,
to synthesize the ideal food at minimal cost. In a variant of this problem, the
vector b specifies the minimal requirements of an adequate diet; in that case, the
constraints Ax = b are replaced by Ax > b, and the problem is not in standard
form.

Reduction to standard form

As argued earlier, any linear programming problem, including the standard
form problem (1.3), is a special case of the general form (1.1). We now
argue that the converse is also true and that a general linear programming
problem can be transformed into an equivalent problem in standard form.
Here, when we say that the two problems are equivalent, we mean that given
a feasible solution to one problem, we can construct a feasible solution to
the other, with the same cost. In particular, the two problems have the
same optimal cost and given an optimal solution to one problem, we can
construct an optimal solution to the other. The problem transformation
we have in mind involves two steps:

(a) Elimination of free variables: Given an unrestricted variable z; in a

problem in general form, we replace it by z;” —z; , where x and x;
are new variables on which we impose the sign constraints .Ej— >0
and z; > 0. The underlying idea is that any real number can be

written as the difference of two nonnegative numbers.

(b) Elimination of inequality constraints: Given an inequality constraint

of the form
n
Zaiﬂ?]‘ < b;,
i=1



