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Foreword

ETAPS 2005 was the eighth instance of the European Joint Conferences on
Theory and Practice of Software. ETAPS is an annual federated conference that
was established in 1998 by combining a number of existing and new confer-
ences. This year it comprised five conferences (CC, ESOP, FASE, FOSSACS,
TACAS), 17 satellite workshops (AVIS, BYTECODE, CEES, CLASE, CMSB,
COCV, FAC, FESCA, FINCO, GCW-DSE, GLPL, LDTA, QAPL, SC, SLAP,
TGC, UITP), seven invited lectures (not including those that were specific to
the satellite events), and several tutorials. We received over 550 submissions to
the five conferences this year, giving acceptance rates below 30% for each one.
Congratulations to all the authors who made it to the final program! I hope that
most of the other authors still found a way of participating in this exciting event
and I hope you will continue submitting.

The events that comprise ETAPS address various aspects of the system de-
velopment process, including specification, design, implementation, analysis and
improvement. The languages, methodologies and tools which support these ac-
tivities are all well within its scope. Different blends of theory and practice
are represented, with an inclination towards theory with a practical motivation
on the one hand and soundly based practice on the other. Many of the issues
involved in software design apply to systems in general, including hardware sys-
tems, and the emphasis on software is not intended to be exclusive.

ETAPS is a loose confederation in which each event retains its own identity,
with a separate program committee and proceedings. Its format is open-ended,
allowing it to grow and evolve as time goes by. Contributed talks and system
demonstrations are in synchronized parallel sessions, with invited lectures in
plenary sessions. Two of the invited lectures are reserved for “unifying” talks on
topics of interest to the whole range of ETAPS attendees. The aim of cramming
all this activity into a single one-week meeting is to create a strong magnet for
academic and industrial researchers working on topics within its scope, giving
them the opportunity to learn about research in related areas, and thereby to
foster new and existing links between work in areas that were formerly addressed
in separate meetings.

ETAPS 2005 was organized by the School of Informatics of the University of
Edinburgh, in cooperation with

— European Association for Theoretical Computer Science (EATCS);
— European Association for Programming Languages and Systems (EAPLS);
— European Association of Software Science and Technology (EASST).

The organizing team comprised:
— Chair: Don Sannella
— Publicity: David Aspinall
— Satellite Events: Massimo Felici
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— Secretariat: Dyane Goodchild

— Local Arrangements: Monika-Jeannette Lekuse
— Tutorials: Alberto Momigliano

— Finances: lan Stark

— Website: Jennifer Tenzer, Daniel Winterstein
— Fundraising: Phil Wadler

ETAPS 2005 received support from the University of Edinburgh.
Overall planning for ETAPS conferences is the responsibility of its Steering
Committee, whose current membership is:

Perdita Stevens (Edinburgh, Chair), Luca Aceto (Aalborg and
Reykjavik), Rastislav Bodik (Berkeley), Maura Cerioli (Genoa), Evelyn
Duesterwald (IBM, USA), Hartmut Ehrig (Berlin), José Fiadeiro
(Leicester), Marie-Claude Gaudel (Paris), Roberto Gorrieri (Bologna),
Reiko Heckel (Paderborn), Holger Hermanns (Saarbriicken), Joost-Pieter
Katoen (Aachen), Paul Klint (Amsterdam), Jens Knoop (Vienna),
Kim Larsen (Aalborg), Tiziana Margaria (Dortmund), Ugo Mon-
tanari (Pisa), Hanne Riis Nielson (Copenhagen), Fernando Orejas
(Barcelona), Mooly Sagiv (Tel Aviv), Don Sannella (Edinburgh),
Vladimiro Sassone (Sussex), Peter Sestoft (Copenhagen), Michel
Wermelinger (Lisbon), Igor Walukiewicz (Bordeaux), Andreas Zeller
(Saarbriicken), Lenore Zuck (Chicago).

I would like to express my sincere gratitude to all of these people and or-
ganizations, the program committee chairs and PC members of the ETAPS
conferences, the organizers of the satellite events, the speakers themselves, the
many reviewers, and Springer for agreeing to publish the ETAPS proceedings.
Finally, I would like to thank the organizer of ETAPS 2005, Don Sannella. He
has been instrumental in the development of ETAPS since its beginning; it is
quite beyond the limits of what might be expected that, in addition to all the
work he has done as the original ETAPS Steering Committee Chairman and
current ETAPS Treasurer, he has been prepared to take on the task of orga-
nizing this instance of ETAPS. It gives me particular pleasure to thank him for
organizing ETAPS in this wonderful city of Edinburgh in this my first year as
ETAPS Steering Committee Chair.

Edinburgh, January 2005 Perdita Stevens
ETAPS Steering Committee Chair



Preface

This volume contains the 29 papers presented at ESOP 2005, the 14th European
Symposium on Programming, which took place in Edinburgh, UK, April 6-
8, 2005. The ESOP series began in 1986 with the goal of bridging the gap
between theory and practice, and the conferences continue to be devoted to
explaining fundamental issues in the specification, analysis, and implementation
of programming languages and systems.

The volume begins with a summary of an invited contribution by Andrew
Myers titled “Programming with Explicit Security Policies,” and continues with
the 28 papers selected by the Program Committee from 114 submissions. Each
submission was reviewed by at least three referees, and papers were selected
during a 10-day electronic discussion phase.

I would like to sincerely thank the members of the Program Committee for
their thorough reviews and dedicated involvement in the PC discussion. I would
also like to thank the subreferees, for their diligent work. Martin Karusseit and
Noam Rinetzky helped me with MetaFrame, used as the conference management
software. Finally, I would like to thank Anat Lotan-Schwartz for helping me to
collect the final papers and prepare these proceedings.

January 2005 Mooly Sagiv
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Programming with Explicit Security Policies

Andrew C. Myers

Cornell University
andru@cs.cornell.edu

Abstract. Are computing systems trustworthy? To answer this, we need to know
three things: what the systems are supposed to do, what they are not supposed to
do, and what they actually do. All three are problematic. There is no expressive,
practical way to specify what systems must do and must not do. And if we had a
specification, it would likely be infeasible to show that existing computing systems
satisfy it. The alternative is to design it in from the beginning: accompany pro-
grams with explicit, machine-checked security policies, written by programmers
as part of program development. Trustworthy systems must safeguard the end-
to-end confidentiality, integrity, and availability of information they manipulate.
We currently lack both sufficiently expressive specifications for these information
security properties, and sufficiently accurate methods for checking them. Fortu-
nately there has been progress on both fronts. First, information security policies
can be made more expressive than simple noninterference or access control poli-
cies, by adding notions of ownership, declassification, robustness, and erasure.
Second, program analysis and transformation can be used to provide strong, au-
tomated security assurance, yielding a kind of security by construction. This is
an overview of programming with explicit information security policies with an
outline of some future challenges.

1 The Need for Explicit Policies

Complex computing systems now automate and integrate a constantly widening sphere
of human activities. It is crucial for these systems to be trustworthy: both secure and
reliable in the face of failures and malicious attacks. Yet current standard practices in
software development offer weak assurance of both security and reliability. To be sure,
there has been progress on automatic enforcement of simple safety properties, notably
type safety. And this is valuable for protecting systems from code injection attacks
such as buffer overruns. But many, perhaps most serious security risks do not rely on
violating type safety. Often the exposed interface of a computing system can be used
in ways unexpected by the designers. Insiders may be able to misuse the system using
their privileges. Users can sometimes learn sensitive information when they should not
be able to. These serious vulnerabilities are difficult to identify, analyze, and prevent.
Unfortunately, current practices for software development and verification do not
seem to be on a trajectory that leads to trustworthy computing systems. Incremental
progress will not lead to this goal; a different approach is needed. We have been exploring
a language-based approach to building secure, trustworthy systems, in which programs
are annotated with explicit, machine-checked information security policies relating to

M. Sagiv (Ed.): ESOP 2005, LNCS 3444, pp. 1-4, 2005.
(© Springer-Verlag Berlin Heidelberg 2005



2 A.C. Myers

properties such as the confidentiality and integrity of information. These properties are
both crucial to security and difficult to enforce. It is possible to write relatively simple
information flow policies that usefully capture these aspects of security. These explicit
policy annotations then support automatic enforcement through program analysis and
transformation.

2 Limitations of Correctness

Of course, the idea of automatic verification has always been appealing—and somewhat
elusive. The classic approach of verifying that programs satisfy specifications can be a
powerful tool for producing reliable, correct software. However, as a way to show that
programs are secure, it has some weaknesses. First, there is the well-known problem that
the annotation burden is high. A second, less appreciated problem is that classic speci-
fications with preconditions and postconditions are not enough to understand whether a
program is secure. Correctness assertions abstract program behavior; if the abstraction
leaves out security-relevant information, the actual program may contain security vio-
lations (especially, of confidentiality) invisible at the level of the abstraction. Thus, it’s
also important to understand not only what programs do but also what they don’t do.
Even if the program has no observable effect beyond what its specification describes,
the specification itself may allow the confidential information to be released. A third
problem is that correctness assertions don’t address the possible presence of malicious
users or code, which is particularly problematic for distributed systems.

3  End-to-End Information Security

If classic specification techniques are too heavyweight and yet not expressive enough,
what are the alternatives? One possibility is information flow policies, which constrain
how information moves through the system. For example, a policy that says some data
is confidential means that the system may not let that data flow into locations where
it might be viewed insecurely. This kind of policy implicitly controls the use of the
data without having to name all the possible destinations, so it can be lightweight yet
compatible with abstraction. Furthermore, it applies to the system as a whole, unlike
access control policies, which mediate access to particular locations but do not control
how information propagates. One can think of information flow policies as an application
of the end-to-end principle to the problem of specifying computer security.
Information flow policies can express confidentiality and integrity properties of sys-
tems: confidentiality is about controlling where information flows to; integrity is about
controlling where information flows from. Integrity is also about whether information
is computed correctly, but even just an analysis of integrity as information flow is useful
for ensuring that untrustworthy information is not used to update trusted information.
Fundamentally, information flow is about dependency [ABHR99], which makes
sense because security cannot be understood without understanding how components
depend on one another. The approach to enforcing information flow that has received
the most attention is to analyze dependency at compile time using a security type sys-
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tem [SMO3]. The Jif programming language [Mye99], based on Java, is an example of
a language with a type system for information security.

The other appealing aspect of information flow policies is that they can be connected
to an underlying semantic security condition, noninterference. Noninterference says
roughly that the low-security behavior of a system does not change when high-security
inputs are changed. This condition (which has many variants) can be expressed in the
context of a programming language operational semantics [VSI96], making possible a
proof that a security type system constrains the behavior of the system.

4  Whole-System Security and Mutual Distrust

Many of the computing systems for which security is especially important are distributed
systems serving many principals, typically distributed at least partly because of security
concerns. For example, consider a web shopping service. At the least, it serves customers,
who do not entirely trust the service, and the companies selling products, who do not
trust the customers or each other. For this reason, the computational resources in use
when a customer is shopping are located variously on the customer’s computer, on the
web service provider, and on the seller’s computers. It is important to recognize that
these principals have their own individual security requirements; the system as a whole
must satisfy those requirements in order for them to participate.

To enforce information security for such a system, it is necessary to know the require-
ments of each of the principals. The decentralized label model [MLO0O] is an information
flow policy language that introduces a notion of information flow policies owned by
principals. For example, in the context of confidentiality, a policy p; : p2 means that
principal p; owns the policy and trusts principal p; to read the corresponding infor-
mation. More generally, p; trusts p, to enforce the relevant security property on its
behalf. This structure makes it possible to express a set of policies on behalf of multiple
principals while keeping track of who owns (and can relax) each policy.

For example, suppose we are implementing the game of Battleship with two players,
A and B. Player A wants to be able to read his own board but doesn’t want B to read
it, so the confidentiality label is {A : A}. For integrity, both principals want to make
sure that the board is updated in accordance with the rules of the game, so the integrity
label has two owned policies: {A: AA B, B: AN B}, where A A B is a conjunctive
principal representing the fact that both A and B must trust the updates to A’s board.

5 Security Through Transformation

Secure distributed systems achieve security through a variety of mechanisms, including
partitioning code and data (as in the web shopping example), replication, encryption,
digital signatures, access control, and capabilities. Analyzing the security of a complex
system built in this fashion is currently infeasible.

Recently, we have proposed the use of automatic program transformation as a way to
solve this problem [ZZNMO02]. Using the security policies in a non-distributed program,
the Jif/split compiler automatically partitions its code and data into a distributed system
that runs securely on a collection of host machines. The hosts may be trusted to varying
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degrees by the participating principals; a partitioning is secure if policies of each principal
can be violated only by hosts it trusts. The transformation employs not only partitioning,
but also all of the distributed security mechanisms above to generate distributed code
for Jif programs. For example, given the labels above, Jif/split can split the code of a
Battleship program into a secure distributed system.

6 Conclusions and Future Challenges

The ability to provably enforce end-to-end security policies with lightweight, intuitive
annotations is appealing. Using policies to guide automatic transformation into a dis-
tributed system is even more powerful, giving a form of security by construction. How-
ever, research remains to be done before this approach can be put into widespread use.

Noninterference properties are too restrictive to describe the security of real-world
applications. Richer notions of information security are needed: quantitative information
flow, policies for limited information release, dynamic security policies [ZM04], and
downgrading policies [CM04]. End-to-end analyses are also needed for other security
properties, such as availability.

Checking information flow policies with a trusted compiler increases the size of the
trusted computed base; techniques for certifying compilation would help.

The power of the secure program transformation technique could be extended by
employing more of the tools that researchers on secure protocols have developed; secret
sharing and secure function computation are obvious examples.

Strong information security requires analysis of how programs use information.
Language techniques are powerful and necessary tools for solving this problem.
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Trace Partitioning in Abstract Interpretation
Based Static Analyzers

Laurent Mauborgne and Xavier Rival
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75230 Paris cedex 05, France
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Abstract. When designing a tractable static analysis, one usually needs
to approximate the trace semantics. This paper proposes a systematic
way of regaining some knowledge about the traces by performing the
abstraction over a partition of the set of traces instead of the set it-
self. This systematic refinement is not only theoretical but tractable: we
give automatic procedures to build pertinent partitions of the traces and
show the efficiency on an implementation integrated in the ASTREE static
analyzer, a tool capable of dealing with industrial-size software.

1 Introduction

Usually, concrete program executions can be described with traces; yet, most
static analyses abstract them and focus on proving properties of the set of reach-
able states. For instance, checking the absence of runtime errors in C programs
can be done by computing an over-approximation of the reachable states of the
program and then checking that none of these states is erroneous. When com-
puting a set of reachable states, any information about the execution order and
the concrete flow paths is lost.

However, this reachable states abstraction might lead to too harsh an approx-
imation of the program behavior, resulting in a failure of the analyzer to prove
the desired property. For instance, let us consider the following program:

if(x < 0){sgn = -1, }
else{sgn =1, }

Clearly sgn is either equal to 1 or —1 at the end of this piece of code; in particular
sgn cannot be equal to 0. As a consequence, dividing by sgn is safe. However,
a simple interval analysis [7] would not discover it, since the lub (least upper
bound) of the intervals [—1, —1] and [1,1] is the interval [~1,1] and 0 € [-1, 1].
A simple fix would be to use a more expressive abstract domain. For instance,
the disjunctive completion [8] of the interval domain would allow the property
to be proved: an abstract value would be a finite union of intervals; hence,
the analysis would report z to be in [—1,—1] U [1,1] at the end of the above
program. Yet, the cost of disjunctive completion is prohibitive. Other domains

M. Sagiv (Ed.): ESOP 2005, LNCS 3444, pp. 5-20, 2005.
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6 L. Mauborgne and X. Rival

could be considered as an alternative to disjunctive completion; yet, they may
also be costly in practice and their design may be involved. For instance, common
relational domains like octagons [16] or polyhedra [11] would not help here, since
they describe convex sets of values, so the abstract union operator is an imprecise
over-approximation of the concrete union. A reduced product of the domain of
intervals with a congruence domain [13] succeeds in proving the property, since
—1 and 1 are both in {1 +2 x k | k € N}. However, a more intuitive way to
solve the difficulty would be to relate the value of sgn to the way it is computed.
Indeed, if the true branch of the conditional was executed, then sgn = —1;
otherwise, sgn = 1. This amounts to keeping some disjunctions based on control
criteria. Each element of the disjunction is related to some property about the
history of concrete computations, such as “which branch of the conditional was
taken”. This approach was first suggested by [17]; yet, it was presented in a
rather limited framework and no implementation result was provided. The same
idea was already present in the context of data-flow analysis in [14] where the
history of computation is traced using an automaton chosen before the analysis.

Choosing of the relevant partitioning (which explicit disjunctions to keep
during the static analysis) is a rather difficult and crucial point. In practice,
it can be necessary to make this choice at analysis time. Another possibility
presented in [1] is to use profiling to determine the partitions, but this approach
is relevant in optimization problems only.

The contribution of the paper is both theoretical and practical:

— We introduce a theoretical framework for trace partitioning, that can be
instantiated in a broad series of cases. More partitioning configurations are
supported than in [17] and the framework also supports dynamic partitioning
(choice of the partitions during the abstract computation);

— We provide detailed practical information about the use of the trace parti-
tioning domain. First, we describe the implementation of the domain; second,
we review some strategies for partition creation during the analysis.

All the results presented in the paper are supported by the experience of the
design, implementation and practical use of the ASTREE static analyzer [2,15].
This analyzer aims at certifying the absence of run-time errors (and user-defined
non-desirable behaviors) in very large synchronous embedded applications such
as avionics software. Trace partitioning turned out to be a very important tool
to reach that goal; yet, this technique is not specific to the families of software
addressed here and can be applied to almost any kind of software.

In Sect. 2, we set up a general theoretical framework for trace partitioning.
The main choices for the implementation of the partitioning domain are evoked
in Sect. 3; we discuss strategies for partitioning together with some practical
examples in Sect. 4. Finally, we conclude in Sect. 5.

2 Theoretical Framework

This section supposes basic knowledge of the abstract interpretation framework
[5]. For an introduction, the reader is referred to [9].



