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Notation

For square or rectangular matrices A € C™**, m > n:

QR factorization: A = QR
Reduced QR factorization: A = QR
SVD: A=UXV*

Reduced SVD: A =UZV*

For square matrices A € C™*™:

LU factorization: PA = LU

Cholesky factorization: A = R*R
Eigenvalue decomposition: 4 = XAX ™!
Schur factorization: A =UTU*

Orthogonal projector: P = QQ*
vu*
v*U

QR algorithm: A* = Q®WRM, 4B = (QW)T4Q®

Householder reflector: F =1 -2

Arnoldi iteration: AQ, =Q,,.H,, H,=Q.AQ,

Lanczos iteration: AQ, = Q,.,T., T, =QFAQ,
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Preface

Since the early 1980s, the first author has taught a graduate course in nu-
merical linear algebra at MIT and Cornell. The alumni of this course, now
numbering in the hundreds, have been graduate students in all fields of engi-
neering and the physical sciences. This book is an attempt to put this course
on paper.

In the field of numerical linear algebra, there is already an encyclopedic
treatment on the market: Matriz Computations, by Golub and Van Loan,
now in its third edition. This book is in no way an attempt to duplicate
that one. It is small, scaled to the size of one university semester. Its aim
is to present fundamental ideas in as elegant a fashion as possible. We hope
that every reader of this book will have access also to Golub and Van Loan
for the pursuit of further details and additional topics, and for its extensive
references to the research literature. Two other important recent books are
those of Higham and Demmel, described in the Notes at the end (p. 329).

The field of numerical linear algebra is more beautiful, and more funda-
mental, than its rather dull name may suggest. More beautiful, because it
is full of powerful ideas that are quite unlike those normally emphasized in
a linear algebra course in a mathematics department. (At the end of the
semester, students invariably comment that there is more to this subject than
they ever imagined.) More fundamental, because, thanks to a trick of his-
tory, “numerical” linear algebra is really applied linear algebra. It is here that
one finds the essential ideas that every mathematical scientist needs to work
effectively with vectors and matrices. In fact, our subject is more than just
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vectors and matrices, for virtually everything we do carries over to functions
and operators. Numerical linear algebra is really functional analysis, but with
the emphasis always on practical algorithmic ideas rather than mathematical
technicalities.

The book is divided into forty lectures. We have tried to build each lecture
around one or two central ideas, emphasizing the unity between topics and
never getting lost in details. In many places our treatment is nonstandard.
This is not the place to list all of these points (see the Notes), but we will
mention one unusual aspect of this book. We have departed from the cus-
tomary practice by not starting with Gaussian elimination. That algorithm is
atypical of numerical linear algebra, exceptionally difficult to analyze, yet at
the same time tediously familiar to every student entering a course like this.
Instead, we begin with the QR factorization, which is more important, less
complicated, and a fresher idea to most students. The QR factorization is
the thread that connects most of the algorithms of numerical linear algebra,
including methods for least squares, eigenvalue, and singular value problems,
as well as iterative methods for all of these and also for systems of equations.
Since the 1970s, iterative methods have moved to center stage in scientific
computing, and to them we devote the last part of the book.

We hope the reader will come to share our view that if any other mathe-
matical topic is as fundamental to the mathematical sciences as calculus and
differential equations, it is numerical linear algebra.
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Lecture 1. Matrix-Vector Multiplication

You already know the formula for matrix-vector multiplication. Nevertheless,
the purpose of this first lecture is to describe a way of interpreting such prod-
ucts that may be less familiar. If b = Az, then b is a linear combination of
the columns of A.

Familiar Definitions

Let £ be an n-dimensional column vector and let A be an m X n matrix
(m tows, n columns). Then the matrix-vector product b = Az is the m-
dimensional column vector defined as follows:

b,=za”$], i=1,...,m. (1.1)
j=1

Here b; denotes the ith entry of b, a;; denotes the i,;j entry of A (ith row,
jth column), and z; denotes the jth entry of z. For simplicity, we assume in
all but a few lectures of this book that quantities such as these belong to C,
the field of complex numbers. The space of m-vectors is C™, and the space of
m x n matrices is C™*".

The map z +— Az is linear, which means that, for any z,y € C* and any
a € C,

Alz+y) = Az+ Ay,
A(az) = oaAz.
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Conversely, every linear map from C" to C™ can be expressed as multiplication
by an m X n matrix.

A Matrix Times a Vector

Let a; denote the jth column of A, an m-vector. Then (1.1) can be rewritten
b = A:E == ijaj- (1.2)
j=1

This equation can be displayed schematically as follows:

1
Zy
b = |a,|ay| - |a, : | a | + 29|l 00| +--+ 2, a,

n

In (1.2), b is expressed as a linear combination of the columns a;. Nothing
but a slight change of notation has occurred in going from (1.1) to (1.2). Yet
thinking of Az in terms of the form (1.2) is essential for a proper understanding
of the algorithms of numerical linear algebra.

We can summarize these different descriptions of matrix-vector products
in the following way. As mathematicians, we are used to viewing the formula
Az = b as a statement that A acts on z to produce b. The formula (1.2), by
contrast, suggests the interpretation that z acts on A to produce b.

Example 1.1. Vandermonde Matrix. Fix a sequence of numbers {z,, z,,
...,z }. If p and ¢ are polynomials of degree < n and « is a scalar, then
p+q and ap are also polynomials of degree < n. Moreover, the values of these
polynomials at the points z; satisfy the following linearity properties:

(p+9)(z;) = p(z;)+q(z),
(ap)(z;) = a(p(z;))-

Thus the map from vectors of coefficients of polynomials p of degree < n to
vectors (p(z,),p(z5),...,p(z,,)) of sampled polynomial values is linear. Any
linear map can be expressed as multiplication by a matrix; this is an example.
In fact, it is expressed by an m x n Vandermonde matriz

1 z, 22 ... 37!
2 n—1

A= 1 z, x5 - x5
2 n—1

l &, @ -~ 2=
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If ¢ is the column vector of coefficients of p,

c=| @ |, p(z) =co+ ¢z +cpr? + -+ ¢,z

[ Cn—1 |

then the product Ac gives the sampled polynomial values. That is, for each ¢
from 1 to m, we have

(AC),- = CO + CI:E,- + sz? + ct + Cn_l.'IJ?_l = p(:L‘i). (1.3)

In this example, it is clear that the matrix-vector product Ac need not
be thought of as m distinct scalar summations, each giving a different linear
combination of the entries of ¢, as (1.1) might suggest. Instead, A can be
viewed as a matrix of columns, each giving sampled values of a monomial,

A=|1|z]|stteita! |, (1.4)

and the product Ac should be understood as a single vector summation in the
form of (1.2) that at once gives a linear combination of these monomials,

' = p(z). O

Ac = ¢yt +cpr+ -+ 1

The remainder of this lecture will review some fundamental concepts in
linear algebra from the point of view of (1.2).

A Matrix Times a Matrix

For the matrix-matrix product B = AC, each column of B is a linear com-
bination of the columns of A. To derive this fact, we begin with the usual
formula for matrix products. If A is £ x m and C is m X n, then B is £ X n,
with entries defined by

bij == Z aikckj. (1.5)
k=1
B, A’

Here b,;, a;;, and ¢,; are entries of
of columns, the product is

and C, respectively. Written in terms



