Mixing 8

Mixing

Institution of Chemical Engineers, Rugby, UK

i

Mixing

Orders for this publication should be directed as follows:

Institution of Chemical Engineers, Davis Building, 165–189 Railway Terrace, RUGBY, Warwickshire CV21 3HQ, UK

Tel: +44 788-578214 Fax: +44 788-560833

Copyright © 1994 Institution of Chemical Engineers A Registered Charity

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means: electronic, electrostatic, magnetic tape, mechanical, photocopying or otherwise, without permission in writing from the copyright owner. Opinions expressed in the papers in this volume are those of the individual authors and not necessarily those of the Institution of Chemical Engineers or of the Organising Committee.

Mixing

Institution of Chemical Engineers, Rugby, UK

Mixing

A three-day symposium organised by the Institution of Chemical Engineers and the Fluid Mixing Subject Group on behalf of the Working Party on Mixing of the European Federation of Chemical Engineers (EFCE) and held at the University of Cambridge, 21-23 September 1994.

0	4 4	~	
Organ	15112	Com	mittee

E. Koutsakos R. Mann C.D. Rielly

J.M. Smith (Chairman) University of Surrey, UK Thames Water, UK UMIST, UK University of Cambridge, UK A. Stieff University of Dortmund, Germany

Technical Programme Committee A.W. Nienow (Chairman) K.J. Carpenter R. King R. Mann C.D. Rielly

University of Birmingham, UK Zeneca, UK BHR Group, UK UMIST, UK University of Cambridge, UK

Corresponding Members

G. Baron	Dienst Chemische Ingenieurstechnik, Belgium	
J. Bertrand	Institut National Polytechnique de Toulouse, France	
J.R. Bourne	Swiss Federal Institute of Technology, Switzerland	
R.V. Calabrese	University of Maryland, USA	
I. Fort	Czech Technical University, Czech Republic	
G.J. Jameson	University of Newcastle, Australia	
H. Karlsen	ITT Flygt AB, Sweden	
F. Magelli	Universita Degli Studi di Bologna, Italy	
A. Mersmann	Technische Universität München, Germany	
E.B. Nauman	Rensselear Polytechnic Institute, USA	
K. Takahashi	Yamagata University, Japan	
H.E.A. Van den Akker	Delft Technical University, The Netherlands	
U. Viesturs	Latvian Academy of Sciences, Latvian Republic	
J. Villermaux	Laboratoire des Sciences du Génie Chimique, France	

INSTITUTION OF CHEMICAL ENGINEERS

SYMPOSIUM SERIES No. 136 EFCE EVENT No. 508 **EFCE PUBLICATION No. 115** ISBN 0 85295 329 1

Printed in the UK by Chameleon Press Ltd, 5–25 Burr Road, Wandsworth, London SW18 4SG

Preface

In September 1974 the first of the European Mixing Conferences was organised by BHRA and held in Churchill College, here in Cambridge. We mark the twentieth anniversary by returning for the Eighth Conference in a series that is now recognised as a prime forum for the reporting of progress in this field, with the published Proceedings having a valued reputation as a source of frequently cited articles that is available worldwide.

On that first occasion just eighteen papers were presented — the organisers had also included centrifugal separation in the programme since there was some concern that mixing alone would not attract enough interest. Twenty years on one of the most difficult tasks in arranging the Conference has been to select from the flood of work offered. The range of the interests of individual participants is so wide that Parallel Lecture Sessions would have been a much less satisfactory format that the extended Poster Presentations we have chosen. Although this has inevitably brought disappointment to some would-be lecturers, and indeed difficulties of funding for others, we hope that the greater opportunities for personal contact will be valued and that as oral and poster presentations receive the same treatment in the Proceedings this will reassure participants of the value placed on their contributions.

Mixing has always been an interdisciplinary subject with applications ranging from microprocesses to atmospheric circulation. It has traditionally been regarded as an empirical technology. Practical difficulties were often associated with the engineering aspects of power transmission and there was frequently little understanding of mixing process requirements. With the refining of objectives a more fundamental view has emerged. The Conference Programme reflects the familiarity that today's mixing technologists are likely to have with theories of turbulence, their realisation of the importance of scale in mixing processes, consciousness of the complications that can arise in multiphase systems and the wide current awareness of the potential — and sometimes limitations — of computational fluid mechanics.

I would like to express on behalf of my colleagues on the Organising Committee our gratitude to the European Federation of Chemical Engineers Working Party on Fluid Mixing for allowing the IChemE, in association with the Fluid Mixing Subject Group of the Institution, to organise this Conference, to the authors for offering their work for presentation on this occasion and to both Corresponding Members and Members of the Programme Committee for the work that has been done in preparing the event.

John M. Smith (Chairman)

Recommended Standard Terminology and Nomenclature for Mixing

This nomenclature is split into the following sections:

- General terms;
- Geometry;
- Fluid properties;
- Dynamics;
- Statistics and measures of mixing;
- Dimensionless groups;
- Subscripts and superscripts;
- Symbols.

Each section contains a glossary of terms and definitions followed by an alphabetical list of recommended symbols. Common usage is followed wherever possible, whilst duplication of symbols is minimized.

General terms

Laminar mixing — reduction of scale of segregation or striation thickness (see below) by laminar flow deformation (cutting, folding, shearing and stretching) with no turbulence or random motion.

Turbulent mixing — reduction of scale of segregation (see below) by random turbulent motion.

Micro-mixing — mixing on a scale smaller than the minimum eddy size, or minimum striation thickness (see below) by molecular diffusion.

Macro-mixing — mixing on a scale greater than the minimum eddy size or minimum striation thickness, by laminar or turbulent motion.

Minimum eddy size — length scale below which molecular diffusion is more significant than mixing by turbulent eddies.

Striation thickness — average distance between adjacent interfaces of materials to be mixed by a laminar mechanism.

Blending — mixing of miscible liquids (of different densities, viscosities, etc).

Dispersion — an immiscible phase (gas, liquid or solid) distributed throughout a fluid in the form of small bubbles, droplets or particles.

Suspension or slurry — a dispersion in liquid of solid particles which may or may not settle out in the absence of agitation or flow.

Paste — a non-Newtonian dispersion of solid particles in high concentration in a liquid.

Froth — a dispersion of gas bubbles in liquid which separates in the absence of agitation and bubble generation.

Foam — a dispersion of gas bubbles in liquid with high volume fraction of gas, which remains stable for a prolonged period in the absence of agitation and bubble generation.

Geometry

Agitator — a rotating mixing element in a vessel (generally mounted on central, axial shaft).

Anchor — an agitator with vertical blades contoured to the shape of the vessel, with close clearance from the wall (see Figure 11).

Angled agitator — agitator with shaft angled to the vessel axis.

Attritor - stirred bead mill.

Baffle — vertical plate, etc, arranged in a vessel to prevent gross liquid swirl and surface vortexing (see Figure 1).

Ball mill — rotating drum containing heavy balls (or rods) falling on material to mix and grind it (for pow-der/liquid) (Figure 6).

Bead mill — vessel containing beads to transmit force to dispersion (powder/liquid) (Figure 10).

Calander — machine for mixing between rolls.

Clearance — gap between anchor blade or ribbon and vessel wall; or distance between propeller, turbine or paddle centre line (at agitator axis) and vessel bottom.

Concave blade — agitator blade curved in vertical plane, concave to flow (Figure 1).

Convex blade — agitator blade curved in vertical plane, convex to flow.

Disc turbine — turbine with blades (flat, pitched, concave, etc) mounted around disc, projecting above and below disc, and not extending to axis (Figure 14).

Disperser — high speed rotating disc, often with sawtooth rim (for dispersing powder in liquid for creating emulsions, etc).

Draught tube — vertical tube, D < tube diameter < T, mounted concentric with agitator to promote circulation (usually with propeller or screw).

Emulsifier — high energy device using flow energy, ultrasonics, etc, to create fine dispersions.

Figure 3—Double-arm z-blade mixer

Figure 4-In-line mixer

Figure 5-Internal (Banbury) mixer

Figure 6—Ball mill

Figure 7—Planetary mixer

Figure 9—Muller

Figure 10-Bead mill

Figure 13—Helical screw stirrer with three baffles at 120°

Figure 11-Anchor agitator

Figure 12—Helical ribbon stirrer (only one of two blades is shown)

Figure 14—Types of turbine

Retreat curved blade turbine

Extruder — one or two screws rotating in close clearance housing. Pumps and mixes by laminar shear.

Flat-blade turbine — Turbine with vertical blades attached directly to shaft.

Helical ribbon — helical ribbon attached remotely to vertical rotating shaft, to give vertical flow near vessel walls (generally for laminar mixing) (Figure 12). Can have second ribbon for opposite flow near vessel axis.

Helical screw — screw flights directly on rotating shaft, giving vertical flow near vessel axis (often used with draught tube). Can be twin intermeshing screws (generally for laminar mixing) (Figure 13).

High-shear mixer — radial flow impeller surrounded by close-clearance stator, giving very high shear within stator with some circulation around vessel (often for liquid/liquid or solid/liquid dispersion) (Figure 2).

Impeller — see Agitator.

Internal mixer — close-clearance single or twin rotors (usually cams) in chamber, giving high shear for paste mixing (Figure 5).

In-line mixer — motionless or rotating mixing elements incorporated into tubular flow device (Figure 4).

Jet mixer — gas or liquid jets arranged in a tube or vessel to provide (generally turbulent) mixing energy.

Motionless mixer — an in-line mixer in which mixing is produced by flow past fixed stationary elements.

Muller — heavy rollers (and scrapers), often springloaded, rotating at low speed in a mixing vessel (for pastes or powder/liquid) (Figure 9).

Off-centre agitator — agitator with centre not on axis of vessel.

Orbital screw — see Planetary mixer (and Figure 8).

Paddle — slow moving flat blade agitator of diameter > $\frac{1}{2}$ vessel diameter, giving predominantly tangential flow.

Pitched-blade turbine — turbine with blades at angle to the vertical (Figure 14) (specify upflow or downflow).

Planetary mixer — mixing element (beater, screw, dough hook) rotating on its own axis which also rotates around the vessel axis (for high viscosities and pastes) (Figure 7).

Propeller — agitator shaped like marine propeller, giving mainly axial flow (Figure 14).

Retreat-curved turbine — turbine with blades curved (in horizontal plane) back from rotation direction (Figure 14).

Sigma-blade mixer — horizontal shafts carrying two contra-rotating shaped bars giving cutting and folding action.

Sparger — device (pipe, perforated ring, etc) for introducing gas into liquid (Figure 1).

Stirrer — see Agitator.

Static mixer — see Motionless mixer.

Swept-blade turbine — see Retreat-curved turbine.

Turbine — radial flow agitator with blade diameter \leq 1/2 vessel diameter (see Disc turbine, Flat-blade turbine, Pitched-blade turbine, Retreat-curved turbine, Vaned disc).

Vaned disc — turbine with blades attached to underside of disc (not extending to centre).

Z-blade mixer — similar to Sigma-blade mixer (Figure 3).

Nomenclature

A _H	heat transfer area	m ²
B AH	baffle width	m
C	clearance of anchor or helical	
L	ribbon from wall	m
C	clearance of baffle from wall	m
$c_{\rm B}$ D	agitator diameter	m
D _c	diameter of coil	m
$D_{\rm sh}$	shaft diameter	m
$D_{\rm t}$	diameter of tube	m
H	height of liquid from bottom	
L	of vessel	m
Н	height of total vessel contents from	
	bottom of vessel	m
lsh	effective shaft length (agitator	
SN	centre to bearing)	m
L	length of agitator blade	
	(perpendicular to shaft)	m
n	number of blades on agitator	
р	pitch of screw, ribbon or propeller	m
T	vessel diameter	m
	volume of liquid in vessel	m ³
$V_{\rm L}$ V	total volume of vessel contents	m ³
W	width of agitator blade	
	(parallel to shaft)	m
С	distance of turbine or paddle centre	
	line (at agitator centre) from bottom	
	of vessel	m
CL	pitch angle of blade to vertical	
	(specify upflow or downflow)	
x, y, z		_
r, θ, z	cylindrical coordinates	

Fluid properties

Nomen	clature	
C_{n}	specific heat	J/kg K
C _p	molecular diffusivity	m ² /s
\mathscr{D}_{H}	thermal diffusivity	m ³ /s
\mathcal{H}_{t} K	Henry's Law coefficient consistency index	N/m ² Ns ⁿ /m ²
n	flow behaviour ('power law') index	_
θ	temperature	K
$\kappa \text{ or } \lambda$	thermal conductivity	W/m K
μ	dynamic viscosity	Ns/m ²
μ,	apparent viscosity	Ns/m ²
μ	extensional viscosity	Ns/m ²
v	kinematic viscosity	m ² /s
ρ	density	kg/m ³
ρ _M	mixture density	kg/m ³
	σ_{LL} , σ_{LS} interface (or 'surface') tension	N/m
τ _y	yield stress	N/m ²

Dynamics

Agglomeration — attaching together of particles (strongly enough to withstand manual handling).

Aggregation — attaching together of particles by relatively weak forces.

Coagulation — attaching together of droplets (eg, emulsion) by short range attractive forces.

Coalescence — merging together of bubbles or droplets to form larger ones.

Flocculation — attaching together of particles suspended in liquid to form loose structures (flocs).

Flooding — overloading of agitator blades by gas such that agitator power consumption is reduced to a minimum.

Wetting — displacement of gas (or vapour) from a solid surface by a liquid.

Circulation time — time interval between successive passages of a fluid element past a fixed point.

Mixing time — time taken to mix from a given initial state to a prescribed final state of mixture quality.

Residence time — time spent by an element of fluid between entry to and exit from the mixer, etc.

Nomenclature

a	interface area per unit volume	
	of dispersion m ⁻¹	
С	concentration kg/m ³ , kgmole/m ³ m ³ /m ³ , etc	
С	space-averaged concentration "	

С	time-averaged concentration	
C'	fluctuating component of concentration	11
<i>C</i> *	equilibrium concentration	#
C _D	drag coefficient	_ 1
d	bubble, droplet, particle diameter	m
a	arithmetic mean of d	m
d _{sv}	surface-volume mean of d	m
$\mathcal{D}_{\rm E}$	eddy diffusivity	m ² /s
f	frequency	s ⁻¹
F	force	N
8	gravitational acceleration	m/s ²
h	film heat transfer coefficient,	1
	process side	W/m K
k	reaction rate constant s^{-1} , m^3 mol ⁻	$^{1}s^{-1}$, etc
k_{T}	turbulence kinetic energy	J/kg
k _s	shear rate constant	rev ⁻¹
k _G	gas 'film' mass transfer coefficient	m/s
k _L	liquid 'film' mass transfer coefficient	m/s
K _G	overall mass transfer coefficient	
	0	m/s
KL	overall mass transfer coefficient	
		m/s
M	1	Nm
N	agitator speed	rev/s
N _{JS}	agitator speed to just suspend	
NZ	particles off vessel bottom (or surface)	rev/s
N _{CH}	agitator speed for complete	marila
N _F	homogeneity of suspension agitator speed for 'flooding' of	rev/s
Γ*F	blades by gas	rev/s
N _{CD}	agitator speed for complete dispersion	104/5
CD	(of gas throughout vessel)	rev/s
P	power	W
9	heat transfer rate	W
Q	volumetric flow rate	m ³ /s
\tilde{Q}_{G}	volumetric gas inlet rate	m ³ /s
$Q_{\rm p}$	agitator pumping rate	m ³ /s
t	time	
t _c	circulation time	S
t _M	mixing time	S
t _R		S
U		W/m K
v		m/s
Vs		m/s
V _{tf}		m/s
Vtr	· · · · · · · · · · · · · · · · · · ·	m/s
Y	shear strain	_1
γ $\dot{\gamma}$ $\dot{\gamma}$	shear rate	s_{-1}^{-1}
		s ⁻¹
	ε_s volume fraction of dispersed phase	1.46
$\epsilon_{\rm T}$	turbulence energy dissipation rate	W/kg
λ_{T}	turbulence length scale	m
τ	shear stress	N/m ²
ω		rad/s

Statistics and measures of mixing

Intensity of segregation — a measure of the difference in concentration between neighbouring clumps of fluid,

$$=\frac{C_{\rm A}^{2}}{C_{\rm A}\left(1-C_{\rm A}\right)}$$

Scale of segregation — a measure of the average distance between 'clumps' of the same component in a mixture.

Scale of scrutiny — length of volume scale at which mixing is measured.

Striation thickness — average distance between adjacent interfaces of materials to be mixed by a laminar mechanism.

Nomenclature

Is	intensity of segregation	
Ls	scale of segregation	m
R	correlation coefficient of concent	rations
Soro	standard deviation	
S^2 or σ^2	variance	5.6. <u> </u>
δ	striation thickness	m

Dimensionless groups

ArArchimedes number
$$\frac{L^3 g \Delta \rho}{v^2 \rho}$$
FIFlow number $\frac{Q}{ND^3}$ FrFroude number $\frac{N^2 D}{g}$ or $\frac{v^2}{gH}$ NeNewton number — see Power numberNuNusselt number — see Power numberNuNusselt number — see Power numberPePeclet number $\frac{hd}{\kappa}$, etcPePeclet number $\frac{V_s D_t}{\mathscr{D}_s}$ or $\frac{C_p \rho_V D_t}{\kappa}$ PoPower number $\frac{P}{\rho N^3 D^5}$ PrPrandt number $\frac{\mu C_p}{\kappa}$ ReReynolds number $\frac{N D^2 \rho}{\mu}$ or $\frac{v D_t \rho}{\mu}$ ScSchmidt number $\frac{\mu}{\rho \mathscr{D}}$ ShSherwood number $\frac{k_t d}{\mathscr{D}}$, etc

 $\frac{N^2 D^3 \rho}{\sigma_{GL}}, \text{ etc or } \\ \frac{\rho v^2 d}{\sigma_{GL}}, \text{ etc }$

Subscripts

- bubble b bulk
- B с
- continuous circulation C
- dispersed phase d
- final
- f gassed
- g gas G
- initial, inlet i
- I interface
- liquid L
- mixture, mixing Μ
- 0 outlet
- particle р
- S solid
- total Т
- ungassed u

Superscripts

	space average
'	fluctuating component
~	time average
*	equilibrium
Svn	ibols
Syn	
a	interface area per unit volume

of dispersion m^{-1} $A_{\rm H}$ heat transfer area m^2 Ar Archimedes number $\frac{L^3 g \Delta \rho}{v^2 \rho}$ B baffle width m c clearance of anchor or helical ribbon from wall m c distance of baffle from wall m C distance of turbine or paddle centre line (at agitator centre) from bottom of vessel m C concentration kg/m ³ , kgmole/m ³ , m ³ /m ³ , etc C space-averaged concentration " C time-averaged concentration " C' fluctuating component of concentration " C' arg coefficient - C' specific heat J/kg \mathscr{D} molecular diffusivity m ² /s	
Bbaffle widthmcclearance of anchor or helical ribbon from wallm $c_{\rm B}$ clearance of baffle from wallmCdistance of turbine or paddle centre line (at agitator centre) from bottom of vesselmCconcentration kg/m³, kgmole/m³, m³/m³, etcCspace-averaged concentration"Ctime-averaged concentration"	
 c clearance of anchor or helical ribbon from wall m clearance of baffle from wall m clearance of baffle from wall m distance of turbine or paddle centre line (at agitator centre) from bottom of vessel m concentration kg/m³, kgmole/m³, m³/m³, etc c space-averaged concentration time-averaged concentration 	
ribbon from wallm $c_{\rm B}$ clearance of baffle from wallm C distance of turbine or paddle centreline (at agitator centre) from bottomof vesselm C concentration kg/m³, kgmole/m³, m³/m³, etc C space-averaged concentration C time-averaged concentration	
$c_{\rm B}$ clearance of baffle from wallm C distance of turbine or paddle centreline (at agitator centre) from bottomof vesselm C concentration kg/m³, kgmole/m³, m³/m³, etc C space-averaged concentration C time-averaged concentration	
 distance of turbine or paddle centre line (at agitator centre) from bottom of vessel m concentration kg/m³, kgmole/m³, m³/m³, etc space-averaged concentration " time-averaged concentration " 	
line (at agitator centre) from bottom of vessel m C concentration kg/m ³ , kgmole/m ³ , m ³ /m ³ , etc C space-averaged concentration " C time-averaged concentration "	
of vessel m concentration kg/m ³ , kgmole/m ³ , m ³ /m ³ , etc c space-averaged concentration " C time-averaged concentration "	
Cconcentration kg/m³, kgmole/m³, m³/m³, etc C space-averaged concentration C time-averaged concentration	
Cspace-averaged concentration"Ctime-averaged concentration"	
Cspace-averaged concentration"Ctime-averaged concentration"	;
C time-averaged concentration "	
C' fluctuating component of concentration " C* equilibrium concentration " C- drag coefficient —	
C* equilibrium concentration "	
C- drag coefficient —	
$C_{\rm p}$ specific heat J/kg	K
$\frac{1}{2}$ molecular diffusivity m^2/s	
$\mathcal{D}_{\rm H}$ thermal diffusivity ${\rm m}^3/{\rm s}$	

$\mathcal{D}_{\rm E}$	eddy diffusivity		m ² /s
d	bubble, droplet, particle		m
d	arithmetic mean of d		m
a _{sv}	surface-volume mean of		m
D	agitator diameter		m
D D _c	diameter of coil		m
	shaft diameter		m
$D_{\rm sh}$	diameter of tube		m
D_t f			s ⁻¹
J F	frequency		N
Г	IOICE		14
171	Elever ever her	Q	
Fl	Flow number	$\overline{ND^3}$	
Ea	Eroudo numbor	$\frac{N^2 D}{\rho}$ or $\frac{v^2}{\rho H}$	
Fr	Froude number	g gH	
			m /2
8	gravitational acceleration		111/5
h	film heat transfer coeffi	cient,	W/m V
	process side	- to - to - for	W/m K
Η	height of total vessel co	ntents from	
	bottom of vessel	ttom of used	m
HL	height of liquid from bo		m
H	Henry's Law coefficien		N/m^2 , etc
I _s	intensity of segregation		—
k	reaction rate constant s	$^{-1}$, m ³ mol ⁻¹ s ⁻¹	, etc
K	consistency index		Ns ⁿ /m ²
k _G	gas 'film' mass transfer	coefficient	m/s
k _L	liquid 'film' mass trans		m/s
ks	shear rate constant		rev ⁻¹
k _T	turbulence kinetic energ	ΣV	J/kg
K _G	overall mass transfer co		
G	referred to gas side	(Alexandra and A	m/s
K _L	overall mass transfer co	efficient	
**L	referred to liquid side	the network let	m/s
l _{sh}	effective shaft length (a	gitator	
°sh	centre to bearing)		m
L	length of agitator blade		
	(perpendicular to shaft)		m
T	scale of segregation		m
L _s M	torque		m
n	number of blades on ag	itator	
n	flow behaviour ('power		
N	agitator speed	law) much	rev/s
	agitator speed for comp	lete	104/5
N _{CD}			rev/s
A.T	dispersion (of gas throu		100/5
N _{CH}	agitator speed for comp		and a
	homogeneity of suspen		rev/s
N _F	agitator speed for 'floo	ding of	
	blades by gas		rev/s
$N_{\rm JS}$	agitator speed to just su	-	2
120	particles off vessel bott		rev/s
Ne	Newton number — see	Power number	
5.800	1	hd	
Nu	Nusselt number	$\frac{hd}{\kappa}$, etc	
		rs.	
р	pitch or screw, ribbon of	of propeller	m
9	heat transfer rate		W

	volumetric flow rate volumetric gas inlet rate agitator pumping rate		m ³ /s m ³ /s m ³ /s
Pe	Peclet number	$\frac{V_s D_t}{\mathscr{D}_E}$ or $\frac{C_B}{2}$	$\rho_V D_t$
Pr	Prandtl number	$\frac{\mu C_p}{\kappa}$	
Ро	Power number	$\frac{P}{\rho N^3 D^5}$	
R	correlation coefficient of	f concentration	IS
Re	Reynolds number	$\frac{N D^2 \rho}{\mu}$ or $\frac{N}{\mu}$	μ
S or o	standard deviation		
Sc	Schmidt number	μ ρ <i>D</i>	
Sh	Sherwood number	$\frac{k_{\rm L}d}{\mathcal{D}}$, etc	
t	time		S
tc	circulation time		S
t _M	mixing time		S
t _R	residence time		S
Т	vessel diameter		m
U	overall heat transfer coef	fficient	W/m K
v	linear velocity		m/s
Vs	superficial velocity		m/s
V _{tf}	terminal falling velocity		m/s
v _{tr} V _L V	terminal rise velocity		m/s
VL	volume of liquid in vesse		m ³
V W	total volume of vessel co width of agitator blade (J		m ³
	to shaft)		m

We	Weber	number
	110001	THUTTOUT

$$\frac{N^2 D^3 \rho}{\sigma_{GL}}, \text{ etc or}$$
$$\frac{\rho v^2 d}{\sigma_{GL}}, \text{ etc}$$

α	pitch angle of blade to vertical (specify	
	upflow or downflow)	There
Ŷ	shear strain	_
γ	shear rate	s ⁻¹
Y Y V V	average shear rate	s ⁻¹
δ	striation thickness	m
٤ _G , 8	ϵ_L, ϵ_S volume fraction of dispersed phase	-
$\epsilon_{\rm T}$	turbulence energy dissipation rate	W/m ³
θ	temperature	K
K OF	λ thermal conductivity	W/m K
λ_{T}	turbulence length scale	m
μ	dynamic viscosity	Ns/m
μ_{a}	apparent viscosity	11
$\mu_{\rm E}$	extensional viscosity	11
ν	kinematic viscosity	m ² /s
ρ	density	kg/m ³
ρ_{M}	mixture density	kg/m ³
σ_{GL}	σ_{LL}, σ_{LS} interface (or 'surface') tension	N/m
τ_y	yield stress	N/m ²
τ	shear stress	N/m ²
ω	angular velocity	rad/s

Acknowledgement This paper was prepared by J.C. Middleton (ICI Corporate Laboratory), M.F. Edwards (University of Bradford) and I. Stewart (Warren Spring Laboratory). It was first publish-ed in *The Chemical Engineer*, August/September 1980 pp 557, 562 1980, pp 557-562.

Contents

Solid liquid

Page v Page vii	Preface Nomenclature
Paper 1	Effects of flow pattern on the solids distribution in a stirred tank
Page 1	A. Bakker, J.B. Fasano (Chemineer, Inc, USA) and K.J. Myers (University of Dayton, USA)
Paper 2 Page 9	Measurement of concentration profiles and mixing kinetics in stirred tanks using a resistance tomographic technique
	S.L. McKee, F.J. Dickin, R. Mann, J. Brinkel, P. Ying (UMIST, UK), R.A. Williams, (Camborne School of Mines, UK), A. Boxman (Du Pont Experimental Station, USA) and G. McGrath (BHR Group Ltd, UK)
Paper 3	Continuous sampling of a slurry from a stirred vessel: analysis of the
Page 17	sampling efficiency and affecting parameters A.A. Barresi, G. Baldi (Politecnico di Torino, Italy) and N. Kuzmanic (University of Split, Croatia)
Paper 4	The effect of viscosity on mixing pattern and solid suspension in stirred vessels
Page 25	S.B. Ibrahim (University of Malaya, Malaysia) and A.W. Nienow (University of Birmingham, UK)
Paper 5	Theoretical approach to minimum stirrer speed in suspensions
Page 33	A.B. Mersmann and F. Werner (Technische Universität München, Germany)
Paper 6	Suspension of high concentration solids in mechanically stirred vessels
Page 41	G.R. Drewer, N. Ahmed and G.J. Jameson (University of Newcastle, Australia)
Paper 7	Development of an erosion resistant mixing impeller for large scale solid suspension
Page 49	applications with CFD comparisons R.J. Weetman (<i>LIGHTNIN, USA</i>)
Paper 8	The influence of liquid properties and impeller type on bubble coalescence behaviour
Page 57	and mass transfer in sparged, agitated reactors T. Martin, C.M. McFarlane and A.W. Nienow (<i>University of Birmingham, UK</i>)
Paper 9	Gas dispersion using mixed high-efficiency/disc impeller systems
Page 65	K.J. Myers (University of Dayton, USA), J.B. Fasano and A. Bakker (Chemineer, Inc, USA)
Paper 10	Gas hold-up and mass transfer studies in tall, multi-impeller reactors
Page 73	F. Chiampo and R. Conti (Politecnico di Torino, Italy)
Paper 11	Hold-up in low viscosity gas-liquid systems stirred with multiple impellers.
Page 81	Comparison of different agitators types and sets
	D. Pinelli, M. Nocentini and F. Magelli (University of Bologna, Italy)
Paper 12	LDA measurements of liquid velocities in sparged agitated tanks with single and
Page 89	multiple Rushton turbines
	I. Rousar and H.E.A. Van den Akker (Delft University of Technology, The Netherlands)
	Page vii Paper 1 Page 1 Page 2 Page 9 Page 9 Paper 3 Page 17 Page 17 Page 17 Page 25 Page 25 Page 23 Pager 5 Page 33 Pager 6 Page 41 Page 49 Page 49 Page 49 Page 7 Page 8 Page 7 Page 7 Page 9

Single-phase

Gas liquid

- Paper 13
 Comparison of mixing action of several stirrers by laser sheet visualization and image processing I. Houcine, H. Vivier, E. Plasari, R. David, J. Villermaux (CNRS-ENSIC-INPL, France) and
 - B. Marcant (Rhône-Poulenc Recherches, France)

Paper 14 Page 105	LDA measurements of flow fields with hydrofoil impellers in fluids with different rheological properties
	Z. Jaworski and A.W. Nienow (University of Birmingham, UK)
Paper 15 Page 113	Homogenization of liquids and fluid-dynamic behaviour of vessels stirred with multiple axial impellers
	M. Jahoda, V. Machon (Prague Institute of Chemical Technology, Czech Republic), D. Pinelli, M. Nocentini, D. Fajner and F. Magelli (University of Bologna, Italy)
Paper 16	Flow transition phenomenon in an axially agitated system
Page 121	O. Bruha, I. Fort and P. Smolka (Czech Technical University, Czech Republic)
Paper 17	An engineering approach to turbulence
Page 129	F. Werner and A.B. Mersmann (Technische Univeristät München, Germany)
Paper 18	A study of the turbulence characteristics of dual-impeller mixing systems using LDA
Page 137	S.M.S. Mahmoudi, K. Rutherford, K.C. Lee and M. Yianneskis (King's College London, UK)
Paper 19	Flow in an agitated vessel equipped with multiple impeller
Page 147	P. Ditl, I. Fort and V. Strejc (Czech Technical University, Czech Republic)

Computational fluid dynamics

Paper 20	Complete numerical simulation of flow fields in baffled stirred vessels:
Page 155	the inner-outer approach
instrum Can	A. Brucato, M. Ciofalo, F. Grisafi and G. Micale (Università di Palermo, Italy)
Paper 21	A numerical study of the residence time distribution in static mixing
Page 163	F. Bertrand, P.A. Tanguy and F. Thibault (URPEI - Ecole Polytechnique, Canada)

Two phase systems

Paper 22	Fundamental studies of phase inversion in a stirred vessel
Page 171	A.W. Nienow, A.W. Pacek, I.P.T Moore and J. Homer (University of Birmingham, UK)
Paper 23	Agitator power draw in sparged boiling reactors
Page 179	J.M. Smith (University of Surrey, UK)
Paper 24	Influence of fluid pressure field on gas flow rate for a gas-inducing impeller
Page 187	G.D. Rigby, G.M. Evans and G.J. Jameson (University of Newcastle, Australia)

Chemical reactions

Paper 25 Page 195	Heat transfer and production of hydroxypropyl starch in a static mixer reactor G. Lammers and A.A.C.M Beenackers (University of Groningen, The Netherlands)
Paper 26	Micromixing in a tubular membrane-module reactor
Page 203	J.R. Bourne and B. Zimmermann (<i>ETH, Zurich, Switzerland</i>)
Paper 27 Page 211	Characteristics of a simple injector for mixing and fast chemical reactions in a tubular reactor J. Armand and J.R. Bourne (<i>ETH</i> , Zurich, Switzerland)
Paper 28	Experimental and numerical investigation of turbulent reactive flow in a tubular reactor
Page 219	S. Valerio, M. Pipino, M. Vanni and A.A Barresi (<i>Politecnico di Torino, Italy</i>)
Paper 29 Page 227	Modelling mass transfer and gas phase mixing in the reactive absorption of ozone C.K. Svihla, R.E. Berson and T.R. Hanley (<i>University of Louisville, USA</i>)
Paper 30	Initial mixing of feed streams in agitated vessels
Page 235	F. Jeurissen, J. Wijers and D. Thoenes (<i>Eindhoven University of Technology, The Netherlands</i>)

Paper 31Local turbulent shear stress in stirred vessels and its significance for different mixing tasksPage 243R. Geisler, R. Krebs and P. Forschner (EKATO Rühr- und Mischtechnik GmbH, Germany)

Micromixing

Paper 32 Page 251	Scale-up of micromixing effects in stirred tank reactors by a parallel competing reaction system
	L. Falk, M.C. Fournier and J. Villermaux (<i>LSGC–ENSIC</i> , <i>France</i>)
Paper 33	A computational study of chemical reactors on the basis of micromixing models
Page 259	R.A. Bakker and H.E. Van den Akker (Delft University of Technology, The Netherlands)
Paper 34	Investigation of micromixing in very viscous liquids
Page 267	J. Baldyga and A. Rozen (Warsaw University of Technology, Poland)
Paper 35	A cylindrical stretching vortex model of micromixing in chemical reactors
Page 275	R.A. Bakker and H.E. Van den Akker (Delft University of Technology, The Netherlands)

Posters

Paper 36 Page 283	A rational method for measuring blending performance, and comparison of different impeller types S. Ruszkowski (BHR Group Limited, UK)
Paper 37	Agitation in gassed magnetite suspensions
Page 293	S. Hjorth (SCABA AB, Sweden)
Paper 38	An alternative method for the dispersing of gas in liquids
Page 301	R. Pawelczyk and K. Pindur (<i>Polish Academy of Sciences, Poland</i>)
Paper 39	An alternative scale procedure for stirred vessels
Page 309	L. Smit (DSM Research, The Netherlands)
Paper 40 Page 317	Application of a 3-D networks-of-zones mixing model to a stirred vessel R. Mann, P. Ying (<i>UMIST, UK</i>) and R.B. Edwards (<i>Unilever Research, UK</i>)
Paper 41	Behaviour of concentrated liquid-liquid dispersions flowing in tubes
Page 325	K.J. Carpenter (<i>Zeneca Ltd., UK</i>), E. Kocianova and I.P.T. Moore (<i>University of Birmingham, UK</i>)
Paper 42	Bubble formation from the moving blades of a gas-inducing impeller
Page 333	S.E. Forrester, C.D. Rielly (<i>University of Cambridge, UK</i>) and K.J. Carpenter (<i>Zeneca Ltd, UK</i>)
Paper 43 Page 341	CFD simulation of flows in stirred tank reactors using a sliding mesh technique J.Y. Murthy, S.R. Mathur and D. Choudhury (<i>Fluent Inc, Lebanon</i>)
Paper 44 Page 349	Comparison of experimental and numerical fluid velocity distribution profiles in a unbaffled mixing vessel provided with a pitched-blade turbine P.M. Armenante, C-C. Chou and R.R. Hemrajani (<i>New Jersey Institute of Technology, USA</i>)
Paper 45	Complete suspension of solid particles in stirred vessels
Page 357	C. Sturesson and A. Rasmuson (Chalmers University of Technology, Sweden)
Paper 46	Dynamic simulation of the two-phase flow mixing in bubble columns
Page 365	A. Lapin and A. Lübbert (<i>Universität Hannover, Germany</i>)
Paper 47 Page 375	Effect of agitator design on hydrodynamics and power consumption in mechanically agitated gas-liquid reactors M.B. Mhetras, A.B. Pandit and J.B Joshi (<i>University of Bombay, India</i>)