Ana Moreira
John Grundy (Eds.)

Early Aspects:
Current Challenges
and Future Directions

10th International Workshop
Vancouver, Canada, March 2007
Revised Selected Papers

LNCS 4765

@ Springer

NEES

TZ??’ Ana Moreira John Grundy (Eds.)
Early Aspects:
Current Challenges

and Future Directions

10th International Workshop
Vancouver, Canada, March 13, 2007
Revised Selected Papers

& springer ||

E2008000702

Volume Editors

Ana Moreira

Universidade Nova de Lisboa
Faculdade de Ciéncias e tecnologia
Departamento de Informadtica
2829-516 Caparica, Portugal
E-mail: amm@di.fct.unl.pt

John Grundy

University of Auckland

Department of Electrical and Computer Engineering and
Department of Computer Science

Private Bag 92019, Mail Centre, Auckland, 1142, New Zealand
E-mail: john-g@cs.auckland.ac.nz

Library of Congress Control Number: 2007941794

CR Subject Classification (1998): D.2, D.3, 1.6, H.4, K.6
LNCS Sublibrary: SL 2 — Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-76810-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-76810-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12192458 06/3180 543210

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi -

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

4765

Preface

Celebrating Five Years of Early Aspects

The early aspects community had its origins in the “Early Aspects: Requirements Engi-
neering and Architecture Design” workshop organized during the first international con-
ference on Aspect-Oriented Software Development (AOSD), in March 2002. Since then,
the early aspects community has grown rapidly. At the time this project started, the Early
Aspects Steering Committee (www.early-aspects.net) had organized nine editions of the
Early Aspects workshop in conferences such as AOSD OOPSLA, ICSE and SPLC and
edited two special issues in international journals. Workshop attendance has exceeded
200, and from these more than 60% were different individuals. This number corresponds
to just over 20 participants per workshop, despite the fact that participation was allowed
only to authors of accepted papers or invited researchers.

However, the early aspects community is much larger than that. A considerable num-
ber of papers have been published regularly in journals, books and conferences where
the early aspects workshop has not yet been organized. The number and range of submis-
sions to the workshop series have demonstrated that the field has a solid base of continu-
ous research being done by established groups around the world.

The early-aspects community is now self-sustaining and continuously expanding.
Therefore, we felt that the fifth anniversary of the first early aspects workshop was an
appropriate juncture to upgrade the autonomous standing of the community by providing
it with its own formal publication. In this way, relevant new work can be showcased in a
dedicated publication, instead of being dispersed across several different events with
more informal proceedings.

What Are Early Aspects?

Traditionally, aspect-oriented software development (AOSD) has focused on the imple-
mentation phase of the software lifecycle: aspects are identified and captured mainly in
code. Therefore, most current AOSD approaches place the burden for aspect identifica-
tion and management on the programmer working at low levels of abstraction. However,
aspects are often present well before the implementation phase, such as in domain mod-
els, requirements and software architecture.

Identification and capture of these early aspects ensure that aspects related to the
problem domain (as opposed to merely the implementation) will be appropriately cap-
tured, reasoned about and available. This offers improved opportunities for early recog-
nition and negotiation of trade-offs and allows forward and backward aspect traceability.
This makes requirements, architecture, and implementation more seamless, and allows a
more systematic application of aspects.

Early aspects are crosscutting concerns that exist in the early life cycle phases of soft-
ware development, including requirements analysis, domain analysis and architecture
design activities. Early aspects cannot be localized using traditional software develop-

VI Preface

ment divide-and-conquer functional decomposition techniques and tend to be scattered
over multiple early life cycle modules. This reduces modularity and reusability, poten-
tially leading to serious maintenance and evolution problems.

Whereas conventional aspect-oriented software development approaches are mainly
concerned with identifying aspects at the programming level, early aspects work focuses
on the impact of crosscutting concerns during earlier activities of software development.
Identifying, modularizing and managing aspects early in the software development proc-
ess has a large and positive impact on the whole software system.

About This Volume

The tenth edition of the Early Aspects workshop was a success. The quality of the tech-
nical program, marked by three special moments, attracted some 50 participants in all.
We began with a brilliant keynote given by Anthony Finkelstein on “Aspects, Views and
Processes” where he emphasized the need to step away from considering aspects purely
in terms of representation and start exploring the tangled relationship between processes
and aspects.

The International Programme Committee selected ten high-quality papers for preset-
nation at the workshop. These were presented in four single-stream sessions with a dis-
cussant and emphasis on audience participation and debate. In a second, post-workshop
phase, the authors were requested to produce a new version of their work to address the
comments received from PC members and also specific points that were raised by their
paper discussant and other participants during the workshop. These revised papers were
submitted to a subset of the original PC members for a second review, each paper in this
volume thus going through a two-stage revision process.

Finally a panel entitled “Early Aspects: Are There Any Other Kind?” was run at the
conclusion of the workshop. The panel leader was Awais Rashid (University of Lancas-
ter) and the panelists were Anthony Finkelstein (University College London), Gregor
Kiczales (University of British Columbia), Maja D’Hondt (INRIA) and Ana Moreira
(Universidade Nova de Lisboa). This panel attracted to the room not only early aspects
researchers but also a whole set of software engineers usually more interested in later
activities of software development. A summary of the discussions closes this volume
with an editorial authored by Awais Rashid.

We would like to thank all the Programme Committee members for evaluating the pa-
pers, the authors for submitting their work and for improving it according to comments
received from reviewers and discussants, and the AOSD-Europe project for sponsoring
the workshop. We also would like to thank the papers discussants: Paul Clements,
Ruzanna Chitchyan, Monica Pinto and Bedir Tekinerdogan. A special word of thanks is
due to Anthony Finkelstein for his superb keynote and to Awais Rashid for making the
panel a success. Many thanks to Gregor, Anthony, Maja and Ana for providing the par-
ticipants with an enthusiastic and lively discussion. No doubt remains about the funda-
mental role played by early aspects in aspect-oriented software development.

September 2007 Ana Moreira
John Grundy

Organization

Program Committee

Alessandro Garcia (University of Lancaster)
Anthony Finkelstein (University College London)
Awais Rashid (University of Lancaster)

Bashar Nuseibeh (Open University)

Bedir Tekinerdogan (University of Twente)
Charles Haley (Open University)

Christa Schwanninger (Siemens)

Dominik Stein (University of Essen)

Elisa Baniassad (Univerity of Hong Kong)
Jaelson Castro (University of Pernanbuco)
Jean-Marc Jezequel (IRISA)

Jeff Gray (University of Alabama at Birmingham)
Jodo Aratjo (Universidade Nova de Lisboa)

John Hosking (University of Auckland)

Jon Whittle (George Mason University)

Juan Hernandez (University of Extremadura)
Julio Leite (PUC, Brazil)

Krzysztof Czarnecki (University of Waterloo)
Len Bass (Carnegie Mellon University)

Lidia Fuentes (University of Malaga)

Michael Jackson (Open University)

Oscar Pastor (University of Valencia)

Paul Clements (SEI, USA)

Robert Walker (University of Calgary)

Ruzanna Chitchyan (Lancaster University)
Siobhan Clarke (Trinity College Dublin)

Stan Sutton Jr. (IBM T. J. Watson Research Center)
Stefan Hanenberg (University of Essen)

Lecture Notes in Computer Science

Sublibrary 2: Programming and Software Engineering

For information about Vols. 1-4257
please contact your bookseller or Springer

Vol. 4902: P. Hudak, D.S. Warren (Eds.), Practical As-
pects of Declarative Languages. X, 333 pages. 2007.
Vol. 4888: F. Kordon, O. Sokolsky (Eds.), Composition
of Embedded Systems. XII, 221 pages. 2007.

Vol. 4849: M. Winckler, H. Johnson, P. Palanque (Eds.),
Task Models and Diagrams for User Interface Design.
X111, 299 pages. 2007.

Vol. 4839: O. Sokolsky, S. Tagiran (Eds.), Runtime Ver-
ification. VI, 215 pages. 2007.

Vol. 4834: R. Cerqueira, R.H. Campbell (Eds.), Middle-
ware 2007. XIII, 451 pages. 2007.

Vol. 4829: M. Lumpe, W. Vanderperren (Eds.), Software
Composition. VIII, 281 pages. 2007.

Vol. 4824: A. Paschke, Y. Biletskiy (Eds.), Advances
in Rule Interchange and Applications. XIII, 243 pages.
2007.

Vol. 4807: Z. Shao (Ed.), Programming Languages and
Systems. XI, 431 pages. 2007.

Vol. 4799: A. Holzinger (Ed.), HCI and Usability for
Medicine and Health Care. XVI, 458 pages. 2007.
Vol. 4789: M. Butler, M.G. Hinchey, M.M. Larrondo-

Petrie (Eds.), Formal Methods and Software Engineer-
ing. VIII, 387 pages. 2007.

Vol.4767: F. Arbab, M. Sirjani (Eds.), International Sym-
posium on Fundamentals of Software Engineering. XIII,
450 pages. 2007.

Vol. 4765: A. Moreira, J. Grundy (Eds.), Early Aspects:

Current Challenges and Future Directions. X, 199 pages.
2007.

Vol. 4764: P. Abrahamsson, N. Baddoo, T. Margaria,
R. Messnarz (Eds.), Software Process Improvement. XI,
225 pages. 2007.

Vol. 4762: K.S. Namjoshi, T. Yoneda, T. Higashino, Y.
Okamura (Eds.), Automated Technology for Verification
and Analysis. XIV, 566 pages. 2007.

Vol. 4758: F. Oquendo (Ed.), Software Architecture.
XVI, 340 pages. 2007.

Vol. 4757: E. Cappello, T. Herault, J. Dongarra (Eds.),
Recent Advances in Parallel Virtual Machine and Mes-
sage Passing Interface. XVI, 396 pages. 2007.

Vol. 4753: E. Duval, R. Klamma, M. Wolpers (Eds.),
Creating New Learning Experiences on a Global Scale.
XII, 518 pages. 2007.

Vol. 4749: B.J. Kridmer, K.-J. Lin, P. Narasimhan (Eds.),
Service-Oriented Computing — ICSOC 2007. XIX, 629
pages. 2007.

Vol. 4748: K. Wolter (Ed.), Formal Methods and Stochas-
tic Models for Performance Evaluation. X, 301 pages.
2007.

Vol. 4741: C. Bessiere (Ed.), Principles and Practice of
Constraint Programming — CP 2007. XV, 890 pages.
2007.

Vol. 4735: G. Engels, B. Opdyke, D.C. Schmidt, F. Weil
(Eds.), Model Driven Engineering Languages and Sys-
tems. XV, 698 pages. 2007.

Vol. 4716: B. Meyer, M. Joseph (Eds.), Software Engi-
neering Approaches for Offshore and Outsourced Devel-
opment. X, 201 pages. 2007.

Vol. 4709: E.S. de Boer, M.M. Bonsangue, S. Graf, W.-P.
de Roever (Eds.), Formal Methods for Components and
Objects. VIII, 297 pages. 2007.

Vol. 4680: F. Saglietti, N. Oster (Eds.), Computer Safety,
Reliability, and Security. XV, 548 pages. 2007.

Vol. 4670: V. Dahl, 1. Niemeld (Eds.), Logic Program-
ming. XII, 470 pages. 2007.

Vol. 4652: D. Georgakopoulos, N. Ritter, B. Benatal-
lah, C. Zirpins, G. Feuerlicht, M. Schoenherr, H.R.
Motahari-Nezhad (Eds.), Service-Oriented Computing
ICSOC 2006. XVI, 201 pages. 2007.

Vol. 4640: A. Rashid, M. Aksit (Eds.), Transactions
on Aspect-Oriented Software Development IV. IX, 191
pages. 2007.

Vol. 4634: H. Riis Nielson, G. Filé (Eds.), Static Analy-
sis. X1, 469 pages. 2007.

Vol. 4620: A. Rashid, M. Aksit (Eds.), Transactions
on Aspect-Oriented Software Development I11. 1X, 201
pages. 2007.

Vol. 4615: R. de Lemos, C. Gacek, A. Romanovsky
(Eds.), Architecting Dependable Systems 1V. X1V, 435
pages. 2007.

Vol. 4610: B. Xiao, L.T. Yang, J. Ma, C. Muller-
Schloer, Y. Hua (Eds.), Autonomic and Trusted Com-
puting. XVIII, 571 pages. 2007.

Vol. 4609: E. Ernst (Ed.), ECOOP 2007 - Object-
Oriented Programming. XIII, 625 pages. 2007.

Vol. 4608: H.W. Schmidt, 1. Crnkovié¢, G.T. Heineman,
J.A. Stafford (Eds.), Component-Based Software Engi-
neering. XII, 283 pages. 2007.

Vol. 4591: J. Davies, J. Gibbons (Eds.), Integrated For-
mal Methods. 1X, 660 pages. 2007.

Vol. 4589: J. Miinch, P. Abrahamsson (Eds.), Product-
Focused Software Process Improvement-XII, 414 pages.
2007. _—

Vol. 4574: J. Derrick, J. Vain (Eds.), Formal Techniques
for Networked and Distributed Systems — FORTE 2007.
X1, 375 pages. 2007.

Vol. 4556: C. Stephanidis (Ed.), Universal Access in
Human-Computer Interaction, Part IIL. XXII, 1020
pages. 2007.

Vol. 4555: C. Stephanidis (Ed.), Universal Access in
Human-Computer Interaction, Part II. XXII, 1066 pages.
2007.

Vol. 4554: C. Stephanidis (Ed.), Universal Acess in Hu-
man Computer Interaction, Part I. XXII, 1054 pages.
2007. ke

Vol. 4553: J.A:dacko (Ed.), Human-Computer Interac-
tion, Part IV. XXIV, 1225 pages. 2007.

Vol. 4552: J.A. Jacko (Ed.), Human-Computer Interac-
tion, Part I11. XXI, 1038 pages. 2007.

Vol. 4551: J.A. Jacko (Ed.), Human-Computer Interac-
tion, Part II. XXIII, 1253 pages. 2007.

Vol. 4550: J.A. Jacko (Ed.), Human-Computer Interac-
tion, Part I. XXIII, 1240 pages. 2007.

Vol. 4542: P. Sawyer, B. Paech, P. Heymans (Eds.), Re-
quirements Engineering: Foundation for Software Qual-
ity. IX, 384 pages. 2007.

Vol. 4536: G. Concas, E. Damiani, M. Scotto, G. Succi
(Eds.), Agile Processes in Software Engineering and Ex-
treme Programming. XV, 276 pages. 2007.

Vol. 4530: D.H. Akehurst, R. Vogel, R.F. Paige (Eds.),
Model Driven Architecture - Foundations and Applica-
tions. X, 219 pages. 2007.

Vol. 4523: Y.-H. Lee, H.-N. Kim, J. Kim, Y.W. Park,
L.T. Yang, S.W. Kim (Eds.), Embedded Software and
Systems. XIX, 829 pages. 2007.

Vol. 4498: N. Abdennahder, F. Kordon (Eds.), Reliable
Software Technologies - Ada-Europe 2007. XII, 247
pages. 2007.

Vol. 4486: M. Bernardo, J. Hillston (Eds.), Formal Meth-
ods for Performance Evaluation. VII, 469 pages. 2007.

Vol. 4470: Q. Wang, D. Pfahl, D.M. Raffo (Eds.), Soft-
ware Process Dynamics and Agility. XI, 346 pages. 2007.

Vol. 4468: M.M. Bonsangue, E.B. Johnsen (Eds.), For-
mal Methods for Open Object-Based Distributed Sys-
tems. X, 317 pages. 2007.

Vol. 4467: A.L. Murphy, J. Vitek (Eds.), Coordination
Models and Languages. X, 325 pages. 2007.

Vol. 4454: Y. Gurevich, B. Meyer (Eds.), Tests and
Proofs. IX, 217 pages. 2007.

Vol. 4444: T. Reps, M. Sagiv, J. Bauer (Eds.), Program
Analysis and Compilation, Theory and Practice. X, 361
pages. 2007.

Vol. 4440: B. Liblit, Cooperative Bug Isolation. XV, 101
pages. 2007.

Vol. 4408: R. Choren, A. Garcia, H. Giese, H.-f. Leung,
C. Lucena, A. Romanovsky (Eds.), Software Engineer-
ing for Multi-Agent Systems V. XII, 233 pages. 2007.
Vol. 4406: W. De Meuter (Ed.), Advances in Smalltalk.
VII, 157 pages. 2007.

Vol. 4405: L. Padgham, F. Zambonelli (Eds.), Agent-

Oriented Software Engineering VIL. XII, 225 pages.
2007.

Vol. 4401: N. Guelfi, D. Buchs (Eds.), Rapid Integra-
tion of Software Engineering Techniques. IX, 177 pages.
2007.

Vol. 4385: K. Coninx, K. Luyten, K.A. Schneider (Eds.),
Task Models and Diagrams for Users Interface Design.
X1, 355 pages. 2007.

Vol. 4383: E. Bin, A. Ziv, S. Ur (Eds.), Hardware and
Software, Verification and Testing. XII, 235 pages. 2007.

Vol. 4379: M. Siidholt, C. Consel (Eds.), Object-Oriented
Technology. VIII, 157 pages. 2007.

Vol. 4364: T. Kiihne (Ed.), Models in Software Engineer-
ing. XI, 332 pages. 2007.

Vol. 4355: J. Julliand, O. Kouchnarenko (Eds.), B 2007:
Formal Specification and Development in B. XIII, 293
pages. 2006.

Vol. 4354: M. Hanus (Ed.), Practical Aspects of Declar-
ative Languages. X, 335 pages. 2006.

Vol. 4350: M. Clavel, F. Durén, S. Eker, P. Lincoln, N.
Marti-Oliet, J. Meseguer, C. Talcott, All About Maude
- A High-Performance Logical Framework. XXII, 797
pages. 2007.

Vol. 4348: S. Tucker Taft, R.A. Duff, R.L. Brukardt, E.
Plodereder, P. Leroy, Ada 2005 Reference Manual. XXII,
765 pages. 2006.

Vol. 4346: L. Brim, B.R. Haverkort, M. Leucker, J. van
de Pol (Eds.), Formal Methods: Applications and Tech-
nology. X, 363 pages. 2007.

Vol. 4344: V. Gruhn, E. Oquendo (Eds.), Software Archi-
tecture. X, 245 pages. 2006.

Vol. 4340: R. Prodan, T. Fahringer, Grid Computing.
XXIII, 317 pages. 2007.

Vol. 4336: V.R. Basili, H.D. Rombach, K. Schneider,
B. Kitchenham, D. Pfahl, R.W. Selby (Eds.), Empirical
Software Engineering Issues. XVII, 193 pages. 2007.

" Vol. 4326: S. Gobel, R. Malkewitz, I. Iurgel (Eds.), Tech-

nologies for Interactive Digital Storytelling and Enter-
tainment. X, 384 pages. 2006.

Vol. 4323: G. Doherty, A. Blandford (Eds.), Interactive
Systems. X1, 269 pages. 2007.

Vol. 4322: F. Kordon, J. Sztipanovits (Eds.), Reliable
Systems on Unreliable Networked Platforms. XIV, 317
pages. 2007.

Vol. 4309: P. Inverardi, M. Jazayeri (Eds.), Software En-
gineering Education in the Modern Age. VIII, 207 pages.
2006.

Vol. 4294: A. Dan, W. Lamersdorf (Eds.), Service-
Oriented Computing — ICSOC 2006. XIX, 653 pages.
2006.

Vol.4290: M. van Steen, M. Henning (Eds.), Middleware
2006. XIII, 425 pages. 2006.

Vol. 4279: N. Kobayashi (Ed.), Programming Languages
and Systems. XI, 423 pages. 2006.

Vol. 4262: K. Havelund, M. Nuiiez, G. Rosu, B. Wolff
(Eds.), Formal Approaches to Software Testing and Run-
time Verification. VIII, 255 pages. 2006.

Vol. 4260: Z. Liu, J. He (Eds.), Formal Methods and
Software Engineering. XII, 778 pages. 2006.

2£32)—Z

Table of Contents

Aspect-Oriented Requirements

A Taxonomy of Asymmetric Requirements Aspects................... 1
Nan Niu, Steve Easterbrook, and Yijun Yu

Flexible and Expressive Composition Rules with Aspect-oriented Use
Case Maps (AOUCM)oiiuiiittt it 19
Gunter Mussbacher, Daniel Amyot, Jon Whittle, and Michael Weiss

Improving Functional Testing Through Aspects: A Case Study......... 39
Paolo Salvaneschi

Aspect Requirements to Design

DERAF: A High-Level Aspects Framework for Distributed Embedded
Real-Time Systems Design 55
Edison Pignaton de Freitas, Marco Aurélio Wehrmeister,
Elias Teodoro Silva Jr., Fabiano Costa Carvalho,
Carlos Eduardo Pereira, and Fldvio Rech Wagner

On the Symbiosis of Aspect-Oriented Requirements and Architectural
Descriptionsottt 75
Lyrene F. Silva, Thais V. Batista, Alessandro Garcia,
Ana Luisa Medeiros, and Leonardo Minora

Aspect-Oriented Architecture Design

AO-ADL: An ADL for Describing Aspect-Oriented Architectures. 94
Mbonica Pinto and Lidia Fuentes

Composing Structural Views in xADL 115
Nelis Boucké, Alessandro Garcia, and Tom Holvoet

Using Aspects in Architectural Description 139
Rich Hilliard
Aspect-Oriented Domain Engineering

Mapping Features to Aspects: A Model-Based Generative Approach 155
Uird Kulesza, Vander Alves, Alessandro Garcia, Alberto Costa Neto,
Elder Cirilo, Carlos J.P. de Lucena, and Paulo Borba

X Table of Contents

Metamodel for Tracing Concerns Across the Life Cycle 175
Bedir Tekinerdogan, Christian Hofmann, Mehmet Aksit, and
Jethro Bakker

Panel

Early Aspects: Are There Any Other Kind? 195
Awais Rashid

Author Index 199

A Taxonomy of Asymmetric Requirements
Aspects

Nan Niu!, Steve Easterbrook!, and Yijun Yu?

! Department of Computer Science, University of Toronto
Toronto, Ontario, Canada M5S 3G4
{nn, sme}@cs.toronto.edu
2 Computing Department, The Open University
Walton Hall, Milton Keynes, UK MK7 6AA
y.yuQopen.ac.uk

Abstract. The early aspects community has received increasing atten-
tion among researchers and practitioners, and has grown a set of mean-
ingful terminology and concepts in recent years, including the notion
of requirements aspects. Aspects at the requirements level present stake-
holder concerns that crosscut the problem domain, with the potential for
a broad impact on questions of scoping, prioritization, and architectural
design. Although many existing requirements engineering approaches ad-
vocate and advertise an integral support of early aspects analysis, one
challenge is that the notion of a requirements aspect is not yet well es-
tablished to efficaciously serve the community. Instead of defining the
term once and for all in a normally arduous and unproductive concep-
tual unification stage, we present a preliminary taxonomy based on the
literature survey to show the different features of an asymmetric require-
ments aspect. Existing approaches that handle requirements aspects are
compared and classified according to the proposed taxonomy. In addition,
we study crosscutting security requirements to exemplify the taxonomy’s
use, substantiate its value, and explore its future directions.

1 Introduction

The many early aspects researchers and practitioners have grown a set of mean-
ingful terminology and concepts, of which the most prominent is the distinc-
tion made between code-level and early aspects. Early aspects are concerns that
crosscut an artifact’s dominant decomposition, or base modules derived from the
dominant separation-of-concerns criterion, in the early stages of the software life
cycle [5]. “Early” signifies occurring before implementation in any development
iteration, and embodies the key activities of requirements engineering, domain
analysis, and architecture design, as indicated in the early aspects Web por-
tal [12].

It is probably not a coincidence that one of the earliest descriptions of early
aspects appeared in the proceedings of the premier requirements engineering
(RE) conference in 1999 [14]. And the fact that the most recent RE conference

A. Moreira and J. Grundy (Eds.): Early Aspects 2007 Workshop, LNCS 4765, pp. 1-18, 2007.
© Springer-Verlag Berlin Heidelberg 2007

2 N. Niu, S. Easterbrook, and Y. Yu

(RE’06) presented the best paper award to an early aspects paper [17] demon-
strates the strong connection between RE and early aspects communities. In
fact, many existing RE approaches advocate and advertise an integral support
of early aspects analysis, e.g., use cases [20], scenarios [3], viewpoints [28], and
goals [36].

Aspects at the requirements level present stakeholder concerns that crosscut
the problem domain, with the potential for a broad impact on questions of
scoping, prioritization, and architectural design. A thorough analysis of early
aspects in requirements offers a number of benefits:

— Explicit reasoning about interdependencies between stakeholder goals and
constraints;

— Improving the modularity of the requirements structure;

— Identification of the impact of early aspects on design decisions can improve
the quality of the overall architectural design and implementation;

— Conflicting concerns can be detected early and trade-offs can be resolved
more economically;

— Test cases can be derived from early aspects to enhance stakeholder satis-
faction; and

— Tracing stakeholder interests throughout software life cycle becomes easier
since crosscutting concerns are captured early on.

Despite the growing awareness of these benefits and the continuing endeavor to
achieve them, one challenge RE and early aspects communities currently face is
that the notion of a requirements aspect, i.e., aspect at the requirements level, is
not yet well established. We seek to explain and clarify the requirements aspects
phenomena. The goal is to provide requirements analysts and other stakeholders
a foundation for discussing specific challenges they might face in aspect-oriented
RE projects. To this end, we conduct literature survey and domain analysis,
thus presenting a taxonomy to show the different features of a requirements
aspect. The sources of our survey focus mainly on asymmetric approaches and
come primarily from the publications and reports in the literature, which can be
found in [12].

Reference models with the unifying taxonomy represent prototypical models
of some application domain, and have a time-honored status. One well-known
example is the OSI 7-layer reference model, which divides network protocols
into seven layers: physical, data link, network, transport, session, presentation,
and application. The taxonomy of protocol layers is in widespread use, and is
discussed in virtually every basic textbook on computer networks. The OSI 7-
layer model is successful because it draws on what was already understood about
the networks domain, thus codifying the core knowledge to be flexible.

Not every domain is sufficiently standardized to allow for a reference model
or a unified taxonomy. In a blooming research field such as early aspects, peo-
ple explore and tackle recognized problems complementarily, based on different
mindsets and traditions. Various perspectives may not converge in a short period
of time, which makes the conceptual unification process arduous and unproduc-
tive most of the time. As an example, the term “component” is used to describe

A Taxonomy of Asymmetric Requirements Aspects 3

rather different concepts in software engineering: subsystems, JavaBeans, Ac-
tiveX controls, .NET assemblies, CORBA components, and more. As we shall
see in section 2, the term “requirements aspect” saliently resembles in this re-
spect the notion of a component.

Moreover, approaches like the one followed by the OSI 7-layer model are not
necessarily supportive of change, especially when this change goes beyond the
initially covered domain. However, at least experience on how to get to the
model and the taxonomy should be recorded and shared [29], as undeniably
a contribution to knowledge. Along this line, we present an initial attempt to
identify reusable resources in the domain of requirements aspects. In section 3,
We document our domain analysis results — a taxonomy of requirements aspects
— using feature diagrams [21], and then apply the taxonomy to compare existing
approaches that deal with aspects at the requirements level.

To exemplify the taxonomy’s use and substantiate its value, in section 4,
we present a reified requirements aspect — security, one of the most mentioned
crosscutting concerns in the current literature. We then review related work in
section 5, and conclude the paper with a summary and some directions for future
work in section 6.

2 A Teaser Description for Requirements Aspects

There exist several definitions and descriptions for the term “requirements as-
pect”, one of them by the initiators of research in early aspects: Elisa Bani-
assad, Paul Clements, Jodo Aratjo, Ana Moreira, Awais Rashid, and Bedir
Tekinerdogan:

“A requirements aspect, then, is a concern that cuts across other
requirement-level concerns or artifacts of the author’s chosen organi-
zation. Tt is broadly scoped in that it’s found in and has an (implicit or
explicit) impact on more than one requirement artifact.” [5]

We will use it as a starting point for our further discussion. Let’s consider
some parts of this description in detail:

— “g concern”: Calling a requirements aspect a concern develops strong ties
with stakeholders of the intended software system. A requirements concern is
a matter of relevance that conveys the problem domain’s property of interest
to specific stakeholders. Therefore, any requirements aspect has its intent or
purpose of existence, and needs to be traced to some stakeholder interest.
Addressing requirements concerns thus enhances the stakeholder satisfaction
and the overall software quality.

— “cuts across”: No matter how stakeholder concerns are structured, a require-
ments aspect crosscuts the dominant decomposition, i.e., the author’s chosen
organization. This view assumes that the author has chosen some dominant
organizing decomposition structure at the requirements level first, and makes
the crosscutting concern a second-class object. Actually, aspect has become
an equivalent substitute for a crosscutting concern in the literature.

4 N. Niu, S. Easterbrook, and Y. Yu

— “author’s chosen organization”: Current requirements techniques offer a vari-
ety of structures for organizing the requirements, such as (structured) natural
languages, use cases, scenarios, viewpoints, goal models, features, etc. [26].
The requirements analyst (author) develops a relatively well-organized set
of requirements based on some dominant decomposition criteria and chosen
structures. Requirements aspects emerge as a result of the lack of additional
decomposition dimensions of the author’s chosen organization.

— “broadly scoped”: The authors of the original article [5] stated that broadly
scoped properties can be quality attributes (nonfunctional requirements) as
well as functional concerns that the requirements engineer must describe
with relation to other concerns. These broadly scoped properties manifest
as scattered and tangled concerns in the author’s chosen organization of
requirements.

— “impact on”: Requirements aspects do not exist in isolation. They need to
contact other requirement-level concerns or artifacts to provide some service
according to their purpose of existence. This service providing process, which
is also known as aspect weaving, is usually done in an oblivious fashion,
i.e., the service provider (aspect) is impelled toward the consumers without
them being aware of aspect’s existence. Recent work has pointed out that
obliviousness is neither an essential nor a desirable property of aspects [32].
Nevertheless, aspects need to explicitly specify the conditions, locations, and
implications of the intended interactions.

This description of the term “requirements aspect” is very generic and thus
it is not surprising that the term is used to describe rather different concepts:
a collaboration in requirements for software components [14], an extension in a
use case diagram [20], a softgoal in a goal model [36], an instance of terminolog-
ical interference in viewpoints-based requirements models [25], a non-functional
requirement (NFR) in a software requirements specification [17], and more.

The purpose of this paper is to try to clarify these different views by providing
a taxonomy for requirements aspects. We therefore do not try to give one concise,
closed definition. Instead, we will show the different features and characteristics
a requirements aspect must or can have, thereby classifying the different kinds
of requirements aspects as they are used today.

3 A Feature Diagram for Requirements Aspects

This section presents the results of applying domain analysis to existing ap-
proaches that tackle requirements aspects. Domain analysis is concerned with
analyzing and modeling the variabilities and commonalities of systems or con-
cepts in a given domain, thereby developing and maintaining an information
infrastructure to support reuse [11].

We document our domain analysis results — a taxonomy of requirements
aspects — using feature diagrams [21]. Essentially, a feature diagram is a hierarchy

A Taxonomy of Asymmetric Requirements Aspects 5

Requirements Aspect

Q
Base Weaving Life Cycle
(Dominant Mechanism

Decomposition) !

refer to Table 1 for
Observable detailed discussion
N —

Intent
(Purpose)

Source
Behavior
Form " .
(Author’s Chosen Funcuqnal Non—Fu{\chonal .
Organization) (Tecl:nmcal) (Qual:yty) Mapping Influence
| :
(Structured) e.g., logging, e.g., security, || gace Aspect
Use Goal | | ViewPoint Natural data validation, availability, -
Case Language buffering, etc. usability, etc.
Legend:

!
(]) PLON :
Mandatory Optional Alternative Reference or
Feature Feature Features Examples

Fig. 1. A feature diagram for asymmetric requirements aspects

of common and variable features characterizing the set of instances of a con-
cept [9]. In our case, the features provide a taxonomy and representation of
design choices for approaches dealing with aspects at the requirements level.

We do not aim for this taxonomy to be normative and immune from change.
In fact, the relatively new area of early aspects has already experienced many
overloaded terms, and many of the terms we use in our taxonomy are often used
differently in descriptions of other approaches. Consequently, we provide minute
examinations of the terms and concepts as we use them. Furthermore, we expect
the taxonomy to evolve as our understanding of requirements aspects matures.
Our main goal is to show the vast range of available choices as represented by
the current approaches, from a reuse perspective.

Figure 1 depicts a feature diagram we use as a basis for our discussion on re-
quirements aspects. We deliberately restrict the diagrammatic notations in Fig. 1
to conforming with those originally proposed in [21], with reference and annotated
examples provided to illustrate specific concepts. In particular, only three types
of lines (edges) connecting boxes (nodes) are presented: mandatory, optional, and
alternative (XOR-choice). This is because the notations in [21] are free of ambi-
guities, whereas later modified feature diagram variants are neither precise nor
ambiguity-free [33]. While we will clarify the diagram semantics on the fly, we re-
fer the interested reader to [21,9,33] for detailed discussion on feature modeling.

6 N. Niu, S. Easterbrook, and Y. Yu

In Fig. 1, the features (denoted by the boxes) of the concept requirements
aspect are described, which is located at the top of the feature diagram. The
boxes directly connected to requirements aspect are the direct sub-features of a
requirements aspect. The little circles at the edges connecting the features define
the semantics of the edge. A filled circle means mandatory. Thus, every require-
ment aspect has an intent or purpose of existence, is of a certain kind, and cuts
across multiple base modules according to the dominant decomposition. Option-
ally (denoted by the outlined circle at the edge), a requirements aspect provides
life cycle information, and defines some weaving mechanism. Alternative fea-
tures means an exclusive-or choice. For example, analysts organize requirements
using one and only one base form in a particular RE stage like use cases, goals,
viewpoints, and so forth.

We elaborate sub-features presented in Fig. 1 in the following sub-sections, and
apply the taxonomy to compare different requirements aspects approaches. As
long as we organize the discussion by (sub-)features, “aspects” emerge and cross-
cut this dominant decomposition structure. We therefore discuss these crosscut-
ting properties in a separate sub-section.

3.1 Intent and Life Cycle

An aspect represents some concern, which only matters to specific stakeholders
of a software system. A requirements aspect represents stakeholder interest in the
problem domain, including high-level concerns like user satisfaction and happi-
ness, system qualities like security and efficiency, software capabilities like fault
tolerance and persistent storage, overall considerations like development time
and return on investment, and many others. Each requirements aspect, there-
fore, needs to have an intent to help justify its very existence with particular
stakeholder interest.

In many cases, the intent is further formulated and elaborated through ob-
servable behaviors to reflect what the stakeholder has in mind to expect the
software to do or bring about. For example, to ensure security, the software
system shall disable user accounts after the wrong password is entered three
times. These observable behaviors are what make the intent operationalizable
and measurable. Naturally, test cases can be derived to check whether the result-
ing software meets the intent, addresses the stakeholder concern, and guarantees
the desired behavior.

Test cases present an instance of the life cycle feature, which supports trace-
ability of requirements aspects throughout the software development life cycle.
Requirements traceability is defined by Gotel and Finkelstein [13] as the ability
to describe and follow the life of a requirement in both a forwards and backwards
direction, i.e., from its origins, through its development and specification, to its
subsequent deployment and use, and through all periods of on-going refinement
and iteration in any of these phases.

Tracing a requirements aspect backwards to its origins helps uncover its
intent and the source of stakeholder interest: whether the aspect is a concern

