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Preface

Raster graphics differs from the more traditional vector or line graphics in the
sense that images are not made up from line segments but from discrete elements
orderly arranged in a two-dimensional rectangular region. There are two reasons
for the growing popularity of raster graphics or bit-mapped displays:

1) the possibilities they offer to show extremely realistic pictures
2) the dropping prices of those displays and associated processors and memories.

With the rise of raster graphics, all kinds of new techniques, methods, algorithms
and data representations are associated -such as ray tracing, raster operations, and
quadtrees- bringing with them a lot of fruitful research.

As stated above raster graphics allows to create extremely realistic (synthesized)
pictures. There are important applications in such diverse areas as industrial design,
flight simulation, education, image processing and animation. Unfortunately many
applications are hampered by the fact that with the present state of the art they
require an excessive amount of computing resources. Hence it is worthwhile to
investigate methods and techniques which may be of help in reducing computer
costs associated with raster graphics applications. Since the choice of data srtuc-
tures influences the efficiency of algorithms in a crucial way, a workshop was set
up in order to bring together a (limited) number of experienced researchers to dis-
cuss this topic. The workshop was held from 24 to 28 June 1985 at Steensel, a
tiny village in the neighbourhood of Eindhoven, the Netherlands. The workshop
was funded by the Department of Mathematics and Computing Science of the Ein-
dhoven University and the Netherlands Foundation for Pure Research (ZWOQ). This
volume consists of the papers presented at the workshop covering a wide range of
subjects.

Franklin’s paper discusses fundamental problems with raster graphics algorithms.
Due to round-of errors, operations on values of type real do not satisfy the distri-
butivity, associativity and commutativity property of arithmetics. Hence, comput-
ers do not satisfy the intuition of graphics experts. Computational errors lead to
graphics errors. But even worse, due to the bumpiness of integers, integer problems
are intrinsically more difficult than problems with real valued numbers. That
exactly is the reason why raster graphics is much more difficult than vector graph-
ics.

Quadtrees have emerged as a convenient method to encode raster graphics images.
From Samet’s bibliography on quadtrees and related hierarchical data structures it
can be seen that they arouse a large number of papers. Inevitably, this volume con-
tains also some papers on this subject, such as a paper on linear quadtrees to store
vector data by Samet, Shaffer and Webber. This paper presents a new data struc-
ture called segment quadtree with applications to a geographic database.

In Oliver’s paper hardware realisation of display algorithms for quadtrees and
octrees are discussed. Octrees, which are similar to quadtrees, are used to encode 3-
D objects. For interactive use images have to be displayed in the shortest possible
time: this implies the use of special hardware. Accordingly, the fast display of
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quadtrees and octrees depends on scan conversion algorithms which are simple
enough to be implemented in hardware. Three hardware systems for the display of
quadtrees are described. Quadtrees containing no less than 30 000 leaves can be
displayed in real time. For realistic pictures, however, this is not yet sufficient.

Van Lierop describes two algorithms and implicit data structures to display 3-D
scenes, composed of polygons, on a raster device. Both algorithms are based on the
so-called painter’s technique and are investigated to be used in interactive applica-
tions.

Ray tracing is a very elegant method that has provided some of the finest examples
of image synthesis in raster graphics. Ray tracing effectively models optical effects,
such as mirroring reflections, cast shadows and transparency with refraction. Long
processing times are the price for this sophistication. Hence it is worthwhile to
study algorithms and data structures to improve the efficiency of ray tracing. Jan-
sen gives an overview of data structures and algorithms to decrease ray tracing
time.

The Programmer’s Hierarchical Interactive Graphics System (PHIGS) is a proposed
graphics programming standard under development by the American National
Standards Institute (ANSI). This standard provides facilities for the development
of interactive 3-D graphics applications. Any implementation of PHIGS should
strive toward the ultimate goal of providing real time support for the full func-
tionality. Abi-Ezzi and Milicia point out in their paper that that goal is impossible
to achieve using current, readily available graphics hardware. This is due to the
inherent complexity of 3-D interactive graphics. One possible solution is the
development of a 'PHIGS machine’.

In recent years several graphical standards (GKS, PHIGS, CORE) have been pro-
posed. These standards provide primitives which can utilize the facilities of raster
displays. However, these standards are not particularly well suited to raster
graphics and exclude functions for shading, texturing and other advanced raster
graphics techniques. Teunissen and van den Bos propose a hierarchical model based
upon a number of 2-D, 1-D and 0-D pattern primitives. ten Hagen and Trienekens
present a structured representation for area oriented picture elements in order to
allow both efficient interaction and scan conversion.

Leray presents the CUBI-7 system for 3-D animation. On conventional systems
(like VAX 11/750) the computing costs for the production of one second of
animated film vary from $ 2000 to $ 3000. In order to decrease those costs, the
CUBI-7 system is designed.

Finally, using Bresenham’s algorithm as an example, van Overveld shows how
modern programming techniques may lead to efficient and elegant programs, which
enjoy our confidence to be correct.

Rens R.A. Kessener
Frans J. Peters
Marloes L.P. van Lierop
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Problems with raster graphics algorithms *

Wm. Randolph Franklin

Electrical, Computer, and Systems Engineering Dept.
Rensselaer Polytechnic Institute
Troy, NY, 12180, USA

ABSTRACT

Assorted unusual problems with raster graphics digitization or
scan conversion algorithms, where the implementation is much
harder than the concept, are considered. They include digitizing a
line that is on a plane so that the line is always visible, and digitiz-
ing a subset of a line correctly. Raster graphics is harder than vector
graphics, in a deep sense.

1. Floating point problems

Before we consider raster algorithms in particular, a review of general arithmetic
problems on computers is in order, since many graphics difficulties have an under-
lying algebraic aspect.

Many raster graphics problems arise from computer floating point numbers. In
fact, it is to avoid these complexities that integers are sometimes used. Floating
point numbers are a model of the real number field which is defined by certain
axioms, (Spiegel, 1963). In fact, for almost every real number axiom, there is a
computer implementation for which it is violated:

Distributivity AX(B+C)=AXB+ AXC

For a violation of this rule, consider a decimal floating number system
which stores one decimal digit for each number. Calculations are performed
exactly and then rounded to one digit. Thus 9 and 10 are exactly
representable in this system, but 11 is not. Because of rounding, 2 X 4 = 10
but 2 X 8= 20. Let A= 2,B= 6,and C= 2. In this number system, distri-
butivity is not satisfied, since AX (B+ C)= 20,but AX B+ Ax C= 10.

Associativity (A+B)+C= A+ (B+C)

* This research is based upon work supported by the National Science Foundation
under Grant No. ECS-8351942, and by the Schlumberger-Doll Research Lab,
Ridgefield Conn.
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This is violated on any machine with fewer than 30 significant digits if
A= 1E30,B= —1.E30,C= 1.

Commutativity A+ B= B+ A

This can be violated on systems which can hold temporary numbers in registers
at a higher precision than they can be stored in memory, and further allow a
register - memory operation if the register is the first operand. When the
second operand is stored in memory, it will lose precision. Four different
machines with overlength floating point registers that violate commutativity are
given in (Malcolm, 1972) and (Gentleman and Marovich, 1974).

Reciprocal E(Y:XXY=1).

For example, in the APL system at RPI, there is no multiplicative inverse for 3
since 1 —3x (1/3)= 1.388E—17.

These problems can be reduced by using a properly designed floating point
standard, but cannot be entirely removed. The IEEE standard, designed by
numerical analysts, is the best. In contrast, those systems dating from the 1960s
can be quite poor.

2. Raster coordinate standards
Two different coordinate systems are possible:

® having the coordinate system pass between the pixels, which are considered to
be little squares and

® having it pass through the centers of the pixels, which are considered to be
points.

These two standards are of equal power, but are incompatible in various off by one
ways:

® Between X= 1 and X = 10, there are 9 pixels by the first standard, but 10
pixels by according to the second.

e If we define a circle such as x> + y2> = 4, then the number of pixels inside it
depends on the standard.

® These differences are also reminiscent of the different methods of antialiasing.
For example, if a pixel is a point then any object smaller than the pixel spac-
ing will be invisible. Thus if pixels are points, we must filter and
bandwidth-limit the objects. On the other hand, if pixels are squares (or more
complicated convolution functions) then the objects need not be pre-filtered.

We will switch between the two standards as appropriate.
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3. Why raster is harder than vector

Many people assume that raster graphics is easier than vector graphics since we are
working with simple integers, perhaps from O to 1023, rather than with an infinite
number of real numbers. This first impression is false, as consideration of the fol-
lowing problems may show:

® drawing a slanted line, and
e filling a polygon

Drawing a vector line is trivial, but a raster line requires a scan conversion algo-
rithm. Filling a vector polygon requires only intersecting the crosshatch lines with
the edges. However a raster polygon raises questions such as 4-connectedness
versus 8-connectedness, and how to find a seed in each component of the polygon.

People feel that raster graphics should be simple because integers are simpler than
real numbers. This is also false. Consider the problem intuitively. One can describe
integer problems, that were posed several centuries ago, and are to date unsolved,
to an intelligent primary school student. Take Goldbach’s conjecture, or Fermat'’s
Last Theorem, for example. Goldbach’s conjecture is that every even number is the
sum of two primes. There are no comparable problems in the real numbers where
there is such a large gap between a problem’s statement and its solution.

The comparative difficulty of the integers has a deep foundation in first order logic.
Consider the set of all formulae with variables in some domain, and using the
universal and existential quantifiers (A and E). We are also allowed certain primi-
tive functions, such as addition. For example, the following formula says that
every number has a half:

A(x:E(y:y+y=x)) (1)

Now if our domain is the integers with addition and the successor function, we
have Presburger arithmetic. There is a decision procedure for automatically prov-
ing the truth or falsity of any such formula, (Yasuhara, 1971), in double exponen-
tial time. However, if we also allow multiplication, then there is no such decision
procedure, and some formulae are undecidable. Since Goldbach’s conjecture could
be expressed with addition and multiplication, if a decision procedure existed, then
the theorem would be trivial.

However, if the variables are real numbers, then all formulae with addition and
multiplication are solvable using Tarski’s decision procedure, in double exponential
time. Further, formulae with just addition can be proved much more quickly over
the reals, in single exponential time, than over the integers. Although every integer
solution is also a real solution, it is not contradictory for the integer formulae to
be slower to solve. The truth of a formula depends on the domain of the vari-
ables. The above formula (1) is false over the integers but true over the reals. The
really difficult cases, such as Fermat’s Last Theorem, have a continuum of real
solutions but only a few integer solutions, if any. Further, in this logic, there is no
way to write a formula which selects the integers only. To do so would require a
primitive floor function or remainder function which is not provided.

Thus, in a deep sense, bumpy integers are harder than smooth reals.
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4. Simple Z-buffer drawing

The goal of any algorithm should be to produce the intuitively correct result for a
user who is unaware of the algorithm’s internals. For example, if object A is in
front of object B in real life, then A should be in front of B in the Z-buffer. Many
of these problems arise in attempting to form a three dimensional generalization of
the two dimensional Bresenham line drawing algorithm.

4.1. Digitizing a line into a Z-buffer

In two dimensions, the obvious way to scan convert or digitize a line is to mark all
pixels within distance 0.5 of the line. However, in three dimensions, consider the
line

L:x=3y,z= 9y

It is easy to give pixel (0,0) the value z= 0. However, what about pixel (1,0)?
Since this point is not exactly on the line, we cannot substitute into the equation
to get z. Various solutions are possible:

e Drop a perpendicular from (1,0) to the closest point on the line, (0.9, 0.3),
and use that z-value, z= 2.7 .

® Since the line’s slope is less than one, we can run a vertical line straight up to
L, at (1,1/3) and use the corresponding z = 3.

e If we know that L is on some relevant plane, such as 2x + 3y — z= 0, then
we can substitute (1,0) into this to get z= 2. The problem with this is that L
may be at the common intersection of several planes.

e If instead we consider the pixel to be a square, around the point, then we can
put bounds on z as L passes through the square. Here the square’s lower left
and upper right corners are at (0.5, —0.5) and (1.5, 0.5) respectively. Line L
enters the square on the left with z= 1.5 and leaves on the right with
z= 4.5. This is some help if we are working with interval arithmetic, but
doesn’t help us get one particular number for the Z-buffer. Sometimes there
are particular reasons for using the minimum or maximum z, as we shall see.

Thus in three dimensions, unlike 2-D, there is no single obvious way to digitize
lines.

4.2. Digitizing a plane into a Z-buffer

Determining what z to assign for each pixel covered by a plane is easy if the pixels
are considered to be points. However, if the pixels are to be squares, then the plane
covers a range of z-values, from which we might choose the min or max perhaps.

4.3. Two crossing lines

Consider two lines, L; and L,, in three dimensions. If L, crosses in front of L,, as
seen by the viewer, then we might expect that if L; and L, cause the same pixel to
be marked in the frame buffer, then that pixel’s final colour should be that of L.
This is impossible in general.



Problems with raster graphics algorithms 5

For example, consider the following two lines:

Li:x=1,z=6y+2
L,:x=3y,z= 9y

In continuous space, they cross at the point (1, 1/3), where z; =4 > z,= 3.
However, they overlap at the pixel (1,0), where, using the second digitizing method
described above, z; = 2 < 2z, = 3. Thus although L, is really closer than L, it
appears farther in the Z-buffer.

The situation gets worse. Consider a set of lines, M;, covering every pixel, and a
single line, L:

L:x=1,z=6y+2
M :y=x/3+1iz=3x+6i

Now L crosses M; at (1,i+ 1/3), where zp = 6i+ 4 > zy = 6i+ 3. However in
the raster domain, they cross at pixel (1,i), where zp = 6i+2 < zy= 6i+ 3.
This means that although L is behind all of the M; in the continuous domain, it is
completely visible in the Z-buffer.

Next let us fit a plane through all the M;, we get
M:x+6y—2z=0

The plane M is in front of L everywhere in the buffer, so there is a difference
whether we use a plane or a set of lines in the plane.

4.4. Line and plane

Another principle that users might want is that if we have a plane and a line on it,
then the line should be visible in front of the plane in every pixel that it covers in
the Z-buffer. Many of the digitization methods for lines described above will have
an undesirable effect: the line will be in front of the plane for several pixels, and
then behind it for several pixels. This is a supreme jaggy effect.

One simple solution is to digitize the lines and planes thus:

® Consider the pixels to be squares, and the lines and planes mark any pixel
whose square they pass through.

® When a line passes through a pixel, choose the minimum z-value that the line
has anywhere in the pixel.

® When a plane passes through a pixel, choose the maximum z-value that the
plane has anywhere in the pixel.

With this standard, any line that is exactly on a plane will appear in front of it in
the Z-buffer. However, lines that are slightly behind the plane may also appear in
front at certain pixels. This is unavoidable. This method was designed assuming
that slightly behind lines are less common than lines on the plane.
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4.5. Line and point

Alternatively, we may have lines and points that we may wish to insert into the
Z-buffer such that if a point is on a line, then it overrides the line at that pixel.
One method that works is this:

® Consider the pixels as squares again.
e If a point is in a certain pixel then use the point’s z-value to mark that pixel.

e If a line passes through a certain pixel, then use that line’s maximum z-value,
not the minimum as before.

Now a point on (or even slightly behind) a line will appear in front of the line in
the Z-buffer. The problem with this method is that it is incompatible with line
and plane method in the previous section. It is an open question whether points,
lines, and planes can all be painted into a Z-buffer, with the points in front of the
lines that they are on, and the lines in front of the planes that contain them.

5. The subset line problem

Even in two dimensional raster graphics it is difficult to determine an unambiguous
part of a line to erase it. This problem can be formalized thus:

® We wish a line digitization algorithm to have the following property:

® Assume that we have digitized a line, L, between two pixels A and B, that is
we have determined a set of pixels, S, in between A and B that are to be
marked to signify the line.

® Assume that we pick two pixels, C and D, from S and digitize a line, M,
between them by setting the pixels in the set T.

® Then, since M is clearly ideally a subset of L, we want our digitization algo-
rithm to cause T to be a subset of S. The problem is not trivial since we must
digitize M without any knowledge of L. Thus for all lines L whose set of pix-
els, S, contains C and D, we require that T contains S.

It is easy to show that the Bresenham algorithm doesn’t satisfy this property. In
fact the following stronger property holds.

Let a translation invariant digitization algorithm be one which just depends on the
difference between the line’s endpoints and not on their absolute coordinates. Then
no translation invariant algorithm has the subset line property unless it is undesir-
able in certain other ways.

It is easy to get a digitization algorithm with the subset line property if we relax
the constraint that the pixels marked be within one half pixel of the actual con-
tinuous line. For example, we could draw a line from A(xl1,yl) to B(x2,y2) by
going horizontally from A to (x2,y1) and then vertically to B. However this is not
a useful digitization.
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Although there are some preliminary results, this is still an open problem: it is not
even known whether a good algorithm exists, let alone how complicated it might
be. It is conceivable that the simplest good algorithm might have to explicitly store
the digitizations of all 1000* lines on a 1000 by 1000 screen, and use table lookup.
Such a solution would be of theoretical interest only.

6. Summary

The study of low level raster algorithms is important because first, theoretical gaps
in them will cause problems in any higher algorithms that use them, and second,
until the simple algorithms are understood, there is no reasonable hope of a
detailed understanding of more complex algorithms. We have seen how some
problems, such as handling crossing lines and planes, have no perfect solution, and
how other problems, such as the subset raster line problem, remain open.
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