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The present volume continues the plan of its predecessor by completing
a two-year course in calculus and analytic geometry suitable as prepara-
tion for a standard, rigorous course in advanced calculus. Whereas the
first volume furnished the basic plane analytic geometry and the elementary
techniques and applications of differentiation and integration of functions
of one argument, this extends the calculus of these functions and discusses
their series expansion, and introduces partial differentiation, multiple inte-
gration, and the concomitant solid analytic geometry.

Though the text, as in the previous volume, tries to make careful,
understandable, thorough discussion of the topics under consideration, the
level of rigor and sophistication has increased somewhat, to go along with
the growing mathematical maturity of the student. It is our hope that
by this time he will be trained to care for precise statement of hypotheses
and conclusion in theorems, and thoughtful analysis of the points in a
proof at which various hypotheses are used.

v



vi PREFACE

A supplement to the chapters on infinite series provides a few carefully
done e- and 8-proofs of limit theorems to introduce the student to these
techniques, though we feel that the complete and organized discussion of
limits and continuity belongs to the realm of the advanced calculus course,
in which the student who continues his mathematics can grasp it in half
the time and with all the more understanding from having had repeated
experience with such concepts as they develop throughout these two
volumes.

The sections on “Things to Think About’ continue to provide supple-
mentary material for good students to ponder, and, while they include
topics of widely varying degrees of difficulty, contain a good many signifi-
cant ideas which perhaps do not belong to the body of the course but add
to it, illuminate it, and form a bridge between it and the advanced calculus.
Some such topics are the osculating circle and the involute (Chapter 26),
rearrangement of series and Raabe’s test (Chapter 28), convergence or
divergence of the binomial series at endpoints of its interval of convergence
(Chapter 29), osculating planes, principal normals, and binormals (Chap-
ter 31), and a careful discussion of the differential (Chapter 32).

As with the previous volume, we owe real thanks to our colleagues
who have taught this book, our students who have taught us, by their
responses, what was good or bad about its original drafts, Prof. A. A.
Bennett who read it critically and made most helpful suggestions, and
all the people at Prentice-Hall who helped with the endless details attend-
ant on the birth of a book. It is our hope that all these combined efforts
may have a hand in the making of some good mathematicians.

M. P. F.
R. B. S.
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24.1 A NEW WAY OF LOCATING POINTS

We have now studied the differentiation and integration of the
elementary functions of a single variable in some detail and have
become acquainted with at least some of the principal simple
uses to which these processes can be put in geometry and physics.
The next way in which we can broaden our viewpoint is by
studying a few new and common ways in which curves and their
corresponding functions can be represented, for there are some
important curves and regions bounded by curves which are
awkward to handle in rectangular coordinates. We start with a
new way of locating points in a plane—by the use of polar
coordinates.
Instead of a set of two mutually perpendicular lines as axes, we
use in our plane a half-line, or ray, starting at a point O and
extending indefinitely in one direction from that point. It is
1
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SEC. 24.2 POLAR COORDINATES 3

conventionally drawn to the right from O. O is called the origin (or
pole) and the ray is the initial ray (or polar axis) (Fig. 24.1). Any point P
in the plane may then be located by its distance r from the origin and by an
angle 0 from the initial ray to OP. There are, of course, many such angles,
positive and negative, and thus, inevitably though rather annoyingly, a point
may be identified in more than one way. OP is called the radius vector to P.
An ordered pair of real numbers, (r, 6), is said to be a set of polar coordinates
for a point P (not the origin) if » (> 0) is the (undirected) length of OP and 6
is the radian measure of any angle from the initial ray to the ray OP. The
origin is special: to it we assign as polar coordinates any pair (0, 6),
(—o < 6 < o). A point thus has many sets of polar coordinates; witness
Fig. 24.1 in which P has coordinates (10, #/6), (10, 137/6), (10, —117/6), and,
in general, (10, 2nw + 7/6) for any integer n. The point O may be (0, 0),
(0, m), (0, —6), (0, =/7), etc.

In assigning polar coordinates to identify a point, it is customary to allow
r also to be negative, in which case the distance |r| is measured on the extension
of the ray given by 0 rather than on the ray itself. For example, in Fig. 24.1,
the point P may be thought of as on the extension of the ray 6 = 7=/6, and P
may thus have additional coordinates (—10, 77/6), (—10, —57/6), or, in
general, (—10, 2n7 + 7=/6).

All the points for which r has the constant value c lie on the circle of
radius |c| with center at the origin, while all points for which 6 = & are on a
line through the origin making an angle of k radians with the initial ray. Thus
points given by their polar coordinates can be easily located on polar coordi-
nate graph paper (Fig. 24.2), on which equally spaced sets of these circles and
lines are drawn, just as points in rectangular coordinates are located on paper
on which equally spaced sets of the curves y = k and x = c (horizontal or
vertical lines) are printed.

242 FUNCTIONS AND THEIR POLAR GRAPHS

A function, you will recall, is a set of ordered pairs of numbers. Whether
we write the rule of correspondence as y = sin x or r = sin 6 or p = sin f,
we always determine the same set of ordered pairs. In making the geometric
picture of the function, however, we can interpret these pairs as rectangular
coordinates (as we have been doing), or we can plot them as polar coordinates
(or, actually, in a variety of other ways). Naturally, the ordered pairs will
correspond to quite different points of the plane under these different inter-
pretations, and a given function will have quite a different picture in rectan-
gular coordinates from the one it has in polars. This is no more surprising
than the fact that Greenland looks different on two different maps made up
on two different projections, or that your reflection looks quite different in a
teaspoon and in a mirror.
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SEC. 24.2 POLAR COORDINATES 5

Let us plot the graph of a function whose number-pairs are interpreted as
polar coordinates.

ExAmPLE 1. Graph r = 10 sin 20, the four-leaved rose.*

SoLuTION. We begin by obtaining a few points. As 6 goes from 0 to =/4,
26 goes from 0 to 7/2, so we will start with this domain for 6, obtaining the

following table and the graph shown in Fig. 24.3.

6 20 sin20 | 10sin 26 point on graph

()} 0 0 0.0 (,0)
w12 | =/6 3 5.0 (5, 7/12) or (5, 15°)F
/8 =4 | V22 7.1 (7.1, 7/8) or (7.1, 22.5°)
a6 | =3 | V32 8.7 (8.7, m/6) or (8.7, 30°)
w4 | w2 1 10.0 (10, 7/4) or (10, 45°)

Now as 0 goes from 7/4 to 7/2, 26 goes from 7/2 to 7, and our knowledge
of the sine function tells us that r will go back through the values 10, 8.7,
7.1, 5, and O as 6 goes through =/4, w3, 37/8, 5712, and 7/2. That is, the
graph will be symmetric in the ray 6 = =/4. Hence, as 6 goes from 0 to =/2,
we obtain the graph in solid line in Fig. 24.4.

Next, as 0 goes from /2 to =, 26 goes from 7 to 2=, and sin 6 is negative.
Moreover, since sin (x + m) = —sin x, the points we obtain can be found
from the calculations for the previous table to be (0, 7/2), (—S5, 77/12),
(—17.1, 57/8), (—8.7, 2=/3), (—10, 37/4), (—8.7, 57[6), (—7.1, T=/8), (-5,
117/12), and (0, 7). These are pictured in the dotted portion of Fig. 24.4.

Finally as 6 goes from = to 27, 20 changes from 27 to 4, and sin 26
attains exactly the same values it-has for 6 between 0 and 7. Thus the graph
becomes that of Fig. 24.5 for 0 < 6 < 2, where the dotted portion distin-
guishes the part of the curve which came from negative values of r. If 0 goes
outside this domain, it is clear that the points merely repeat themselves and
trace the same curve over and over. Notice that a given point of the locus
may thus represent more than one of the ordered pairs which constitute the
function—a situation different from that which occurs when we picture a

function by rectangular coordinates.

* We shall plot our graphs admitting both positive and negative values of *. There are
some occasions, however, on which we are interested only in positive r. If we eliminate
r < 0, the curve, of course, no longer necessarily pictures all the ordered pairs of the
function, and may have fewer points on it. This is the case with this particular locus,
which then becomes the “two-leaved rose.” In our figures, we shall plot portions of the
curve which come only from negative values of r as dotted lines.

1 For the actual plotting, it is sometimes easier to give the measure of 0 in degrees, and
we shall occasionally do this, without prejudice to our restriction that the polar coordinate 0
is the radian measure of this angle. Polar coordinate paper is often printed with degree

markings.



