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PREFACE

The addition of new material is the primary change from the first
edition of this book. Specifically, the second edition provides a fuller dis-
cussion of analytic geometry; the treatment of logarithmic functions has
been expanded; formulas have been summarized at the ends of Chapters
3 to 7 for the convenience of the reader; and, most important of all, the
number of problems has been increased considerably. The text has also
been enhanced in many places by improved explanations.

My purpose, as in the first edition, is to present the ideas that lie at
the heart of calculus, along with the necessary background material from
analytic geometry. I restrict attention to a small collection of central
concepts, and hence many of the topics offered in the larger books on
calculus are omitted. I have aimed at a balance between theory and
applications.

It is hoped that the book will be of use in situations where a brief
course in calculus is wanted. For example, it should be suitable in a
calculus course for liberal arts students, social science students, biological
science students, or business administration students—a course designed
to set forth the nature of the subject with an economy of time. Since
the book grew out of lectures given at Stanford University in a special
program for teachers sponsored by the General Electric Company, it
should serve well courses designed for prospective and present teachers
of high school mathematics. The reader should have a reasonably good
knowledge of basic algebra and trigonometry, although discussions of a
few topics—inequalities and radian measure, for example—have been
included for convenience.

The section headings in the table of contents suffice to describe the
topics considered. Special features of the book are as follows: an immedi-
ate discussion of actual problems in calculus, with a minimum of pre-
liminaries; a simplicity of theory, relatively speaking, obtained on the
one hand by restricting sharply the class of functions in the discourse
and on the other hand by not attempting to state results in their most
general form, or for that matter anywhere near their most general form;
a development of the series expansions of the trigonometric, logarithmic,

v



vi PREFACE

and exponential functions without the elaborate preparation that is
ordinarily used; the postponing of the proof of the existence of the
definite integral to an appendix, partly to break up the theory into
smaller portions, and partly to keep more difficult ideas later in the
presentation.

One of the most troublesome problems facing a writer of a beginning
book on calculus is the matter of rigor. The difficulty is twofold: first
that accuracy of statement can lead to overlengthy statements in which
the reader may lose sight of the central idea in a welter of detail; second
that since theorems in calculus are propositions about real numbers,
ideally there should be a preamble on the logical foundations of the
real number system. I have tried to avoid the first of these difficulties
by a restriction, mentioned already, on the scope of the material. As to
the second difficulty, I take two fundamental propositions about real
numbers as axiomatic. It is assumed that a bounded sequence of in-
creasing real numbers has a limit. The mean value theorem is also as-
sumed without a strict proof, although a heuristic argument is given to
show the plausibility of this result. These results cannot be established
without a rather thorough analysis of the real number system, which is
precluded by the self-imposed limitation on the length of this book.

The more difficult problems are starred. Answers to odd-numbered
problems are given at the end of the book.

I was fortunate in having the manuscript read by two friendly critics
of quite different backgrounds, one a university student, the other an
experienced mathematician. First, I am indebted to my son Scott Niven
who, in addition to making helpful suggestions about details drew my
attention to certain obscure passages. Second, I am grateful to Professor
Herbert S. Zuckerman for pointing out possible arrangements of the
material; among other things, the final chapter was expanded con-
siderably along lines he suggested.

Ivan NiveN
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CHAPTER 1

WHAT IS CALCULUS?

1.0 A short definition of calculus, in a sentence or two for example,
is likely to be meaningless except to persons already familiar with the
subject. The reason for this is that such a definition necessarily refers
to certain mathematical operations whose nature can be known
thoroughly only by prolonged examination and study. Even this book
in its entirety is only a partial answer to the question “What is cal-
culus?”, because a complete answer cannot be given in a short book.
A brief volume cannot encompass the elegant general results of calculus.
For example, some of the topics that are treated in the later chapters of
this book are approached in special ways as individual results, whereas
in larger books on calculus these results are obtained as byproducts of
broad sweeping theories.

In this first chapter we pose a few simple problems of calculus, with
solutions given at once in some cases, but solutions postponed until
later chapters in others. In diving right in, we assume that the reader
has a rudimentary knowledge of inequalities and functions; these
topics are elaborated in Chapter 2, but in more detail than necessary
for the present chapter. Prior to the study of actual problems from
calculus, there is one preliminary discussion on the concept of
slope.

1.1 Slope.* The slope of a straight line is simply a measure of the
steepness of rise or fall of the line, viewed from left to right. Thus the
direction of a line is indicated by its slope, defined as follows. Suppose
that the line makes an angle o with the z-axis, the orientation of «
being from the positive end of the x-axis counterclockwise around to
the line. Then the slope of the line is defined as tan «. If the line is

* Any reader with a knowledge of the concept of slope should bypass this section.
1,
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falling from left to right, as in the case AB in Figure 1.1, then the slope
is negative, whereas if the line is rising from left to right, as in the case
CD in Figure 1.1, then the slope is positive. These cases correspond to
the angle « being obtuse and acute, respectively. If any two points
with coordinates (z1, 1) and (a2, y2) are selected on the line, then the
definition of the tangent function in trigonometry gives the well-
known formula for the slope m,

Y2—Y1
1‘2—.’11.

(1) m = tan o =

F1c. 1.3 Fic. 1.4



SEc. 1 WHAT IS CALCULUS? 3

Any line parallel to the z-axis has « = 0° and y2 = y1, and the slope
of such a line is zero. Any line parallel to the y-axis has o = 90°,
and so such a line has no slope because tan 90° does not exist as a real
number. Another way of seeing that a vertical line has no slope is to
observe that in such a case 3 = z; = 0, and so equation (1) involves
division by zero.

The slope of a curve at any point is defined as the slope of the tangent
line to the curve at P. The tangent line at P, illustrated in Figure 1.3,
can be described as the limiting position of the straight line PQ as the
point Q is moved along the curve towards the point P. That is to say,
we regard P as a fixed point and observe the nature of the straight line
PQ as Q approaches P, moving along the curve. When Q coincides with
P there is no line PQ, but as Q moves towards P there is a limiting pos-
ition of PQ which we will be able to determine by our analysis. In the
special case where the curve is a circle, a well-known theorem from ele-
mentary geometry states that the tangent line at any point is perpen-
dicular to the radius drawn to the point of tangency, as illustrated in
Figure 1.4. For curves other than the circle there is no corresponding
theorem, but we shall be able with the use of calculus to determine the
tangent lines of many types of curves. From these considerations
we can observe that whereas a straight line has one slope, a curve
has a slope at each point, and the slope is generally different from
point to point.

Problems

1. Prove that the formula (1) can be written

Yi—y2
m =

1 —x2

2. Find the slopes of the following lines:
(a) through (0, 0) and (5, 7);
(b) through (—1, 2) and (4, —6);
(c) through (1, 2) and (a, b), presuming that @ # 1;
(d) through (2, —3) and (-3, —3).

3. Find the numerical value of z so that the line joining (x, —4) and
(6, 1) shall have slope 2.

4. Prove that the line joining A(5, —7) and B(6, 1) has the same slope
as the line joining B(6, 1) and C(8, 17), and thus establish that the three
points A, B, C are collinear.

5. Prove that the points (4, —9), (=1, —6), and (—16, 3) are collinear.

6. Find the numerical value of y so that the point (7, y) shall lie on the
line joining (1, 3) and (9, 19).
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7. Prove that the line through (4, 2) and (7, 1) is parallel to the line
through (5, 6) and (—1, 8). Suggestion: two lines (not parallel to the y-axis)
are parallel if and only if their slopes are equal.

8. Find the numerical value of y required so that the line through (—2, 3)
and (8, 1) shall be parallel to the line through (1, —4) and (—4, ).

9. Prove that the four points (1, —2), (3, —5), (8,4), and (6, 7) are the
vertices of a parallelogram.

10. Prove that the points (1, —2), (3, —5), (8,4), and (10, 1) are the
vertices of a parallelogram.

*11. Find a point, other than (6, 7) and (10, 1), which forms a parallelo-
gram along with (1, —2), (3, —5), and (8, 4).

12. Prove that the line through (7, 0) and (10, 4/3) is inclined to the z-axis

at an angle of 30°. (Recall that tan 30° = 1/4/3.)

13. Prove that the line through (1, 5) and (8, 12) is inclined to the z-axis
at an angle of 45°. (Recall that tan 45° = 1.)

14. Find the slope of the line joining (a, b) and (¢, d) presuming that a
is not equal to c.

15. Find the slope of the line joining (a, b) and (a+c¢, b+d), presuming
that ¢ is not equal to zero.

1.2 An Example. We now give a sample problem from differential
calculus. What should be the dimensions of a cylindrical tin can of
fixed volume 187 cubic inches, so that the surface area is a minimum?
Since the surface area is roughly proportional to the total amount of
metal in the can, the solution of the problem will give almost the dimen-
sions for minimum cost of the metal. The figure 187 for the volume
was chosen so that the arithmetic calculations would work out simply.
Actually 187 cubic inches is very close to a volume of one quart.

Let r, &, S, and V denote, respectively, the radius, the height, the
total surface area, and the volume of a circular cylinder. Then it will
be recalled that

V = mar2h and S = 27r2+ 27rh.

The symbol ¥ can be replaced by the constant 187, and so by simple
algebra we can eliminate % in the formula for S,

187 = mr2h, h = 1812, S = 27r2+4 27rh,
18

S = 277(r2+——).
r

Thus we have obtained S as a function of ». (It may be noted that we
could have eliminated r in the algebraic process, and arrived at a for-
mula giving S as a function of 2. But square roots enter in, and so the
above procedure is preferred).

* The more difficult problems are starred.
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(1

The graph of the function S = 27(r2+ 18/r) is shown in Figure 1.5,
for a reasonable set of positive values of r. To find the minimum
value of S, we need some technique for locating the low point on the
curve, the point labeled P in Figure 1.5. It is the point where the slope
of the curve is zero. To the right of the point P the slope of the curve is
positive, whereas to the left of the point P the slope of the curve is
negative. The question of determining the coordinates of the point P
can be settled easily by the methods of differential calculus. We are
not at present in a position to finish the above problem of minimizing
S, and we will return to the question later. But the example shows that
some questions of maxima and minima could be handled if we knew
how to calculate the slope of a curve, and so find where the slope is
zZero.

S -axis

30

1 r-axis

Fi1c. 1.5 Graph of § = 2#[r2418/r].
(Note the different units of length on the axes.)

We have referred to the equation S = 27(r2+ 18/r) as a “function”
Most of the functions used in this bock can be expressed as simple
equations in this way, because we will work with a restricted class of
functions. Furthermore in most cases our function will have a graph
as in Figure 1.5, for example, or in Figure 1.6 below.

The commonly used variables in mathematics are of course y and x
rather than S and r, so the functions we deal with will have equations

like
y=2a% y=2a2-3x+2, y=+/22-2.

When we say that y is a function of , as in these examples, we mean
simply that to each assigned numerical value of x there is a
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corresponding numerical value of 4. In the three examples above, if we
assign to «x the value 3, thenwegety = 9,y = 2,and y = 7, respectively.
It should be noted that for many functions there are limitations on the
values of x that are to be assigned. In the case of the function

y = Va2—2 for instance, the value x = 0 would not be assigned because

this gives y = Vv — 2, which is a number of a type not considered in this
book. We limit our attention to real numbers, which are described
briefly at the start of Chapter 2. Another example of a limitation of
this sort can be seen in Figure 1.5; here we would not assign negative
values to r because the radius r must be a positive number.

The graph of a function is a pictorial representation of the function
by use of a coordinate system. It is easier to conceive a function in its
graphical form than in a more abstract way as a correspondence between
sets of numbers. For this reason we will approach functions through
their graphs wherever possible.

It will also be necessary to think of functions in a general sense.
Just as the symbol « is used to denote an arbitrary number, so the
notation f(x) is used to denote an arbitrary function. Thus f(x), read
“fofa”, is a general notation for a function of x. The corresponding
equationisy = f(x). For a specific function like y = 22— 3x+ 2, we can
also write f(x) = a2—3x+2. Then in turn « can be specified, for
example

f(5) = 52—3-5+2 = 12, f(9) = 92—3-9+2 = 56.

These sketchy remarks on the idea of a function will suffice for this
chapter. A fuller discussion is given in § 2.5.

Problems

1. In the analysis of the cylindrical tin can a formula was derived for S as
a function of r. Derive a formula for S as a function of A.

2. Draw the graph of y = 4x—3 on a coordinate axis system.

3. Sketch the graph of y = a22—1, using a succession of integer values of
x from x = —5 to v = 5. (The integers are the numbers 0,1, —1, 2, —2,3,
—-3,4,—4,....)

4. Sketch the graph of y = 7—2a2.

5. Given f(x) = 22—3x+2, compute f(7), f(—7), f(0) and f(—3).

6. In the case f(z) = 12+x—22, find the values of f(0), f(1), f(—4), f(5/2),
and f(—8).

7. For the function f(z) = 23—3, evaluate f(2), f(—2), f(0), f(—3), and
f(/2).

1.3 The Slope of a Special Curve. We turn to a much simpler
equation than S = 2x(r2+ 18/r) to begin our treatment of the slope of
a curve. The problem now is to find the slope of the curve y = a2
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at the point (3, 9). The parabolic equation y = 22 is about the sim-
plest among non-linear equations, and so provides a good starting
point. As in Figure 1.6, let us denote the point (3, 9) by A, and let
P be any nearby point on the curve. Since the point P, unlike A, is not
a fixed point, we give it coordinates (x, x2). This is nothing but the
general coordinates (z,y) with y replaced by 22 in accordance with
the presumption that P is a point on the curve y = 22. The slope of
the chord AP, by formula (1) of § 1.1, is (22— 9)/(z—3). The tangent
line to the curve y = a2 at A is the limiting position of the chord AP as
the point P approaches the point
A. Thus the slope of the tangent

line at A, which by definition is the P (x,x2)
same as the slope of the curve at A,
is the limiting value of (x2—9)/ A (3,9)

(x—3) as x approaches 3 VVe can-
not simply substitute z = 3, be-
cause (i) geometrically the points P
and A coincide and there is no
chord AP, and (ii) algebraically
the expression (22—9)/(x—3) be-
comes 0/0, which has no meaning.

Now by elementary algebra we

have
x2—9  (x+3)(x—3)
= = x+3, Fic. 1.6 Graph of y = 22.
x—3 x—3

and (x2—9)/(x—3) is indeed equal to x+3 for all values of x except
one, namely @ = 3. The function f(x) = x+ 3 has a straight line graph
as shown in Figure 1.7 when plotted in the usual fashion with a hori-
zontal x-axis and a vertical y-axis. The function F(x) = (22—9)/(x—3)

/ // :}; (p;:llr)it? %3 6)
/ /

F16. 1.7 Graph of f(x) = =+3. Fic. 1.8 Graph of f(z) = (22—9)/(x—3).
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has virtually the same graph but with a point missing, a gap at (3, 6).
It is clear intuitively that the limit of (22— 9)/(x—3) as x approaches
3 is the same as the limit of 2 + 3 as  approaches 3. We shall spell out
a precise definition of limit later. In the meantime we write the standard
notation for limits

_a2—9
lim = lim (x+3) =
223 -3 -3

where “lim” stands for “limit”’, and “@ — 3" is short for “as x ap-
proaches 3”’. We notice that while (22— 9)/(x — 3) hasno value at z = 3,
nevertheless it has a limit as  approaches 3. This limiting value 6 is
thus the slope of the curve y = 22 at the point (3, 9).

It is instructive also to consider a set of values of (22— 9)/(x—3)
asx — 3:

x (22— 9)/(x—3)
3.1 6.1
3.01 6.01
3.001 6.001
3.0001 6.0001
3410710 6+ 1010

This table of values suggests the germ of the idea of limit, namely that
. 22—9
lim

73 -3

=6

means that (22— 9)/(x — 3) gets closer and closer to 6 as « approaches 3
We shall formulate this technically in the next chapter.

Problems

Find the slope of the curve y = 222 at the point (3, 1
Find the slope of the curve y = 22 at the point (2, 4).
Find the slope of the curve y = 22 at the point (1, 1)
Find the slope of the curve y = 22 at the point (-3, 9).
Solve the preceding problem by using the information that the slope
of the curve y = % is 6 at the point (3,9), and the fact that the graph of
the curve is symmetric about the y-axis.

6. Find the slope of the curve y = —a2 at the point (5, —25).

7. What is the slope of the curve y = 2246 at the point where 2 = 6?

8. What would be the expected value of the slope of y = a2 at (0, 0)?
Check this value by the limit procedure.

9. Find the slope of y = 22+ at (1, 2).

*10. What is the slope of the curve y = 23 at the point (3, 27)?

8).

SURice o=



