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Preface

Mathematical models of groundwater fow have been used since the late 1800s.
-A mathematical iicdel consists of a set of differential equations that are known
to govern the flow of groundwater. The reliability of predictions from a ground-
water model depends on how well the model approximates the field situation.
Inevitably, simplifying assumptions must be made in order to construct a model
because the field situation is too complex to be simulated exactly. Usually, the
assumptions necessary to solve a mathematical model analytically are fairly
restrictive—for example, many analytical solutions require that the medium be
homogeneous and isotropic. To deal with more realistic situations, it is usually
necessary to solve the mathematical model approxxmately using numerical
techniques. Since the 1960s, when high-speed digital computers became widely

available, numerical models have be¢n the favored type of model for studying

groundwater. The subject of this book is the use of numerical mode!s to simulate
groundwater flow and contaminant transport.

This book offers a fundamental and practical introduction to finite difference
and finite element techniques. Our goal is to enable readers to sojve groundwater
flow problems with the digital computer, and every topic is developed with the
aim of conveying a full understanding of the steps leading to the short sample
computer programs included as part of the text. The programs can be run on
any computer with a FORTRAN compiler. (On the University of Wisconsin
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Univac 1100, job charges were about 75¢ per program.) Several of the sample
problems appear in different forms throughout the text to illustrate various
methods and assumptions. Problems at the ends of chapters are demgned to
reinforce the principles presented in the text.

The book covers five major topics. In Chapter 1, we review some fundamental
principles of groundwater flow. In Chapters 2 and 3, we present an introduction
to the finite difference method as applied to steady-state problems. Our method
is to present selected applications for which numerical solutions are compared
with analytical solutions. This method is used to verify the accuracy of the
numerical solution. Once we have established confidence in the numerical
solution technique, the numerical model can be used to solve problems. for
which no analytical solutions are available. ' '

In Chapters 4 and 5, the method of finite differences is applied to transient
flow problems. Governing equations used in Chapters 1 through 5 are derived
as needed. Chapters 6 and 7 contain an introduction to the method of finite
elements as applied to steady-state and transient flow problems, respectively.
Finally, Chapter 8 contains a discussion of contaminant transport. We derive
the advection-dispersion equation, which governs the movement of contami-
nants through a groundwater system, and we use the finite element method to
solve a sample problem. ' :

The subject inatter becomes progressively more difficult in the later chapters
of the book, and readers should expect to spend mare time comprehending
material in Chapters 4 and 5 than in Chapters 1 through 3. Likewise, the
matenal in Chapters 6 through 8 is intrinsically more difficult than that in the
earlier chapters.

Our book can serve as the first introduction for readers headed towards
advanced work in numerical modeling of groundwater systems, or it can serve
as a complete course for readers headed towards related areas of water resources
who need a basic grasp of modeling concepts. Calculus, physics, FORTRAN
programming, and a brief introduction to matrices are necessary prerequisites.
The book can be used in a one-semester senior or graduate level course in
geology or engineering. It could also supplement more general courses in
hydrogeology or fluid mechanics. Professional engineers and geologists who
desire an introduction to groundwater modeling should find the book readable
and useful, especially if they have access to a computer.

We are especially grateful to Irwin Remson, who critically rev1ewed several
versions of the entire manuscript. John Bredehoeft, Jay Lehr, Debu Majumdar,
and Evelyn Roeloffs also made helpful suggestions. Thanks also go to the many
students who commented on early versions of the manuscript.

June 1981 ' I Herbert F. Wang
' Mary P. Anderson
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introduction

1.1 MODELS

A model is a tool designed to represent a simplified version of reality. Given
this broad definition of a model, it is evident that we all use models in our
everyday lives. For example, a road map is a way of representing a complex
array of roads in a symbolic form so that it is possible to test various routes on
the map rather than by trial and error while driving a car. A road map could
be considered a kind of model (Lehr, 1979) because it is a way of representing
reality in a simplified form. Similarly, groundwater models are also representa-
tions of reality and, if properly constructed, can be valuable predictive tools
for management of groundwater resources. For example, using a groundwater
model, it is possible to test various management schemes and to predict the
effects of certain actions. Of course, the validity of the predictions will depend
on how well the model approximatesfield conditions. Good field data are
essential when using a model for predictive purposes. However, an attempt to
model a system with inadequate field data can also be instructive as it may
serve to identify those areas where detailed field data are critical to the success
of the model. In this way, a model can help guide data collection activities.



1 / INTRODUCTION

Types of Groundwater Models

Several types of models have been used to study groundwater flow systems.
They can be divided into three broad categories (Prickett, 1975): sand tank
models, analog models, including viscous fluid models and electrical models,
and mathematical models, including analytical and numerical models. A sand
tank model consists of a tank filled with\an unconsolidated porous medium
through which water is induced to flow. A major drawback of sand tank models
is the problem of scaling down a field situation to the dimensions of a labora-
tory model. Phenomena measured at the scaic of a sand tank model are often
different from conditions observed in the field, and conclusions drawn from
such models may need to be qualified when translated to a field situation.

As we shall see later in the book, the flow of groundwater can be described
by differential equations derived from basic principles of physics. Other pro-
cesses, such as the flow of electrical current through a resistive medium or the
flow of heat through a solid, also operate under similar physical pnﬁmplés
In other words, these systems are analogous to the groundwater system. The
two types of analogs used most frequently in groundwater modeling are
viscous fluid analog models and electrical analog modeis.

Viscous fluid models are known as Hele—-Shaw or parallel plate models
because a fluid more viscous than water (for example, oil) is made to flow
between two closely spaced parallel plates, which may be oriented either
vertically or horizontally. Electrical analog models were widely used in the
1950s before high-speed digital computers became available. These models
consist of boards wired with electrical networks of resistors and capacitors.
They work according to the principle that the flow of groundwater is analogous
to the flow of electricity. This analogy is expressed in the mathematical sim-
ilarity between Darcy’s law for groundwater flow and Ohm’s law for the flow
of electricity. Changes in voltage in an electrical analog model are analogous
to changes in groundwater head. A drawback of an electrical analog model is
that each one is designed for a unique aquifer system. When a different aquifer
is to be studxed an entirely new electricc! analog model must be built.

A mathematical model consists of a set of differential equations that are
known to govérn the flow of groundwater. Mathematical models of ground-
water flow have been in use since the late 1800s. The reliability of predictions
using a groundwater model depends on how well the model approximates the
field situation. Simplifying assumptions must always be made in order to
construct a model because the field situations are too complicated to be sim-
ulated exactly. Usually the assumptions necessary to solve a mathematical
model analytically are fairly restrictive. For example, many analytical solutions
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reqmre that the med:gun be homogeneous and isotropic. To deal with more
realistic situations, it is usually necessary to solve the mathematical model
approximately using mamerica¥techniques. Since the 1960s, when high-speed
digital computers became wifely available, numerical models have been the
favored type of model for studying groundwater. The subject of this book is
the use of numerical methods to solve mathematical models that simulate
groundwater flow and contaminant transport. ,
We consider two types of models—finite difference models (Chapters 2
through 5) and finite element models (Chapters 6 through 8). In either case, a
system of nodal points is superimposed over the problem domain. For example,
consider the problem shown in Figure 1.1. The problem domain consists of an
aquifer bounded on one side by a river (Figure 1.1a). The aquifer is recharged
areally by precipitation, but there is no horizontal flow out of or into the aquifer
except along the river. Two finite difference representations of the problem
domain are illustrated in Figures 1.1b and 1.1c, and a finite element representa-

tion is shown in Figure 1.1d.

The concept of elements (that is, the subareas delineated by the lines con-
necting nodal points) is fundamental to the development of equations in the
finite element method. Triangular elements are used in Figure 1.1d, but quad-
rilateral or other elements dre also possible. In the finite difference method,
nodes may be located inside cells (Figure 1.1b) or at the intersection of grid
lines (Figure 1.1c). The finite difference grid shown in Figure 1.1b is said to use
block-centered nodes, whereas the grid in Figure 1.1c is said to use mesh-
centered nodes. Aquifer properties and head are assumed to be constant within
each cell in Figure 1.1b. In Figure 1.1c, nodes are located at the intersections
of grid lines, and the area of influence of each node is defined following one of
several different conventions. Regardless of the representation, an equation is
written in terms of each nodal point because the area surrounding a node is not
directly involved in the development of finite difference equations.

The goal of modeling is to predict the value of the unknown variable (for
example, groundwater head or concentration of a contaminant) at nodal points.
Models -are often used to predict the effects of pumping on groundwater levels.
For example, consider the aquifer shown in Figure 1.1. In this example, a modél
could be used to predict the effects of pumping the three wells in the well field
on water levels in the four observation wells or to predict the effects of installing
additional pumping wells. The model could also be used to determine how
much water would be diverted from the river as a result of pumping. However,
before a predictive simulation can be made, the model should be calibrated
and verified. The process of calibrating and verifying a model is discussed in
Chapter 5. '
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Finite difference and finite element representations of an aquifer region.

(a) Map view of aquifer showing well field, observation wells, and boundaries,

(b) Finite difference grid with block-centered nodes, where Ax is the spacing in the x
direction, Ay is the spacing in the y direction, and b is the aquifer thickness.
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1.2 PHYSICS OF GROUNDWATER FLOW
Darcy’s Law

Darcy set out to find experimentally what factors govern water flow through a
sand filter (Figure 1.2). He measured the discharge by timing the rate at which
water filled a 1 square meter basin at the outlet, and he measured the head
drop across the sand. Darcy defined head to be the height, relative to the
elevation of the bottom of the sand, to which water rises in each U-shaped
. tube. Although Darcy used mercury-filled manometers, he always reported his
" head data in terms of the equivalent water height. We shall demonstrate that
head is proportional to the sum of the pressure potential of the mercury (or

any fluid) in the U-shaped tube plus the elevation potential relative to the

Appareil destine af déterminer la loi

de I'écoulement de] l'eau | & wravers le sable.

Figure 1.2
Darcy’s experimental sand column.
(From Hubbert, 1969. © 1956,
Society of Petroleum Engineers of
AIME, published JPT, Oct. 1956;
Trans. AIME, 1956. Facsimile of

Fig. 3 in Darcy, Henry, Les Fontaines
de la Ville de Dijon, Victor Dalmont,
Paris, 1856.)
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base level. Applying the term head to the height above sea level of water in a
well is the correct field use in Darcy’s original sense of the term.

By a series of experiments, Darcy established that, for a given type of sand,
the volume discharge rate Q is directly proportional to the head drop h, — h,
and to the cross-sectional area A, but it is inversely proportional to the length
difference ¢, — ¢,. Calling the proportionality constant K the hydraulic
conductivity gives Darcy’s law: -

h; —h,

=7 . (L1)

Q= -K4A

The negative sign signifies that groundwater flows in the direction of head loss.
Figure 1.3 is a graph showing Darcy’s experimental data. It illustrates the
linear relationship between discharge rate and head drop for two different

sands. '

30
First series
October 29-November 2, 1855
=
’E’ 20+
2
g Fifth series '
é 10 February 17-18, 1856
0 1
0 5 10 15
Drop in head across sand (meters)
Figure 1.3

Darcy’s data showing that discharge is proporfional to head drop for
two different sands. (From Hubbert, 1969. © 1956, Society of Petrolkyth
Engineers of AIME, published JPT, Oct. 1956; Trans. AIME, 1956,
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Hubbert's Force Potential

Groundwater flows in¥esponse to. pressure differences and elevation differences.
Numerous persons made the error of equating head to pressure and neglecting
elevation. Hubbert (1940) clarifies the concept of groundwater potential and
its relationship to Darcy’s head by deriving it from basic physical principles.
Groundwater potentialat a given point is the energy required to transport a
unit mass of water from a standard reference state to that point. Differences
in potential give rise to éljoUndwater flow; that is, water moves from higher
potential to lower potential. The potential is called a force potential because
its space derivative has units of force per unit mass.

‘We now. follow Hubbegt's derivation of the groundwater potential. Two
separate : force po&nttheuum and elevation—act on a unit mass of .
groundwater. Suppose wethave a sand-filled tube saturated with water, and -
the pressure is P at a height z. The potential energy per unit mass of water is
defined to be the work requiked to bring a unit mass of water from a reference |
position z, to its.actual position z. If we consider the pressure at the reference
position to be zero, then the pressure P is in gage pressure, the pressure above
. atmospheric.

We consider separately the work required to raise the unit mass of water to
pressuire P and to raise the unit mass to elevation z. The work per unit mass
required to raise the water pressure is

1 pp
W= -’;j'o Vdp (12)

where m is the water mass and V is the water volume. The volume V is m/p,,,
where p,, is the density of water. If the water is assumed to be incompressible,
that is, density is the same at all pressures, then the work per unit mass to raise
.- the water pressure to P is P/p,,. The work per unit mass required to raise the
fluid to elevation z is g(z — z,,¢), where g is the acceleration of gravity. There-
fore, the total groundwater potential is

' P
¢ = o + g(z = Ze) (1.3)

w

We have expressed the sought-for potential for groundwater flow in funda-
mental physical terms. How is the potential ¢ related to Darcy’s head h? That
is, how do the terms of Equation 1.3 relate to the physically measured quantities
in Darcy’s experiment? Refer to Figure 1.4. Let the elevation reference datum



