5

Stanley Burris
H.P. Sankappanavar

A Course
in Universal
Algebra

Springer—Verlag
New York Heidelberg Berlin
World Publishing Corporation Beijing China



Stanley Burris
H. P. Sankappanavar

A Course 1n
Universal Algebra

With 36 Illustrations

Springer-Verlag

New York Heidelberg Berlin
World Publishing Corporation,Beijing,China




Stanley Burris

H. P. Sankappanavar

Department of Pure Mathematics  Instituto de Matematica

Faculty of Mathematics Universidade Federal da Bahia

University of Waterloo Salvador, Bahia 40000

Waterloo, Ontario N2L 3Gl BRAZIL

CANADA

Editorial Board

P. R. Halmos F. W. Gehring C. C. Moore
Managing Editor Department of Mathematics ~ Department of Mathematics
Department of Mathematics  University of Michigan University of California
Indiana University Ann Arbor, Michigan 48104  Berkeley, CA 94720
Bloomington, Indiana 47401  USA USA

USA

AMS Subject Classification (1980): 68-01, 08AXX, 03C05

Library of Congress Cataloging in Publication Data

Burris, S.

A course in universal algebra.
(Graduate texts in mathematics; 78)

Bibliography: p.

Includes index.

1. Algebra, Universal,
II. Title. III. Series.
QA251.B87 512

I. Sankappanavar, H. P.

81-1619
AACR2

© 1981 by Springer-Verlag New York Inc.
All rights reserved. No part of this book may be translated or reproduced in any form
without permission from Springer-Verlag, 175 Fifth Avenue, New York, New York

10010, U.S:A.

Reprinted in China by World Publishing Corporation ‘
For distribution and sale in the People's Republic of China only

ARER S AR ERTT

ISBN 0-387-90578-2 Springer-Verlag New York Heidelberg Berlin
ISBN 3-540-90578-2 Springer-Verlag Berlin Heidelberg New York
7-5062-0108-9 World Publishing Corporation China



This book is dedicated to our children

Kurosh Phillip Burris
Veena and Geeta Sankappanavar



Acknowledgments

First we would like to express gratitude to our colleagues who have added
so much vitality to the subject of Universal Algebra during the past twenty
years. One of the original reasons for writing this book was to make readily
available the beautiful work on sheaves and discriminator varieties which we
had learned from, and later developed with H. Werner. Recent work of, and
with, R. McKenzie on structure and decidability theory has added to our
excitement, and conviction, concerning the directions emphasized in this
book.

Ih the late stages of polishing the manuscript we received valuable
suggestions from M. Valeriote, W. Taylor, and the reviewer for Springer-
Verlag. For help in proof-reading we also thank A. Addmson, M. Albert,
D. Higgs, H. Kommel, G. Krishnan, and H. Riedel. A great deal of credit
for the existence of the final product goes to Sandy Tamowski whose enthu-
siastic typing has been a constant inspiration. The Natural Sciences and
Engineering Research Council of Canada has generously funded both the
research which has provided much of the impetus for writing thi§ book as
well as the preparation of the manuscript through NSERC Grant No. A7256.
Also thanks go to the Pure Mathematics Department of the University of
Waterloo for their kind hospitality during the several visits of the second
author, and to the Institute of Mathematics, Federal Umvers1ty of-Bahia,
for their generous cooperation in this venture.

The second author would most of all like to express his affectionate
gratitude and appreciation to his wife—Nalinaxi—who, over. the past four
years has patiently endured the many.trips between South and North
America which were necessary for this project. For her understanding and
encouragement he will always be indebted.

And finally we are delighted that Springer-Verlag agreed to our request
to have this book appear in their GTM series.



Preface

Universal algebra has enjoyed a particularly explosive growth in the last
twenty years, and a student entering the subject now will find a bewildering
amount of material to digest.

This text is not intended to be encyclopedic; rather, a few themes central
to universal algebra have been developed sufficiently to bring the reader to
the brink of current research. The choice of topics most certainly reflects
the authors’ interests.

Chapter 1 contains a brief but substantial introduction to lattices, and
to the close connection between complete lattices and closure operators.
In pa:tlcular everything necessary for the subsequent study of congruence
lattices is included.

Chapter !l develops the most general and fnndamcntal nouons of uni-
versal algebra—these include the results that apply to all types of algebras,
such as the homomorphism and isomorphism thgorems. Free algebras are
discussed in great detail—we use them to derive the existence of simple
algebras, the rules of equational logic, and the imp,orfant Mal’cev conditions.
We introduce the notion of classifying a variety by properties of (the lattices
of) congruences on members of the variety, Also, the center of an algebra is
defined and used to characterize modules (up to polynomial equivalence).

In Chapter III we show how neatly two famous results—the refutation
of Euler’s conjecture on orthogonal Latin squares and Kleene's character-
ization of languages accepted by finite automata—can be presented using
universal algebra. We predict that such “applied universal algebra” will
become much more prominent.

Chapter IV starts with a careful development of Boolean algebras, in-
cluding Stone dqahty, which is sybsequently used in our study of Boolean
sheaf representations; however, the cumbersome formulation of general
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X Preface

sheaf theory has been replaced by the considerably simpler definition of a
Boolean product. First we look at Boolean powers, a beautiful tool for
transferring results about Boolean algebras to other varieties as well as for
providing a structure theory for certain varieties. The highlight of the chapter
is the study of discriminator varieties. These varieties have played a remark-
able role in the study of spectra, model companions, decidability, and
Boolean product representations. Probably no other ciass of varieties is so
well-behaved yet so fascinating. :

The final chapter gives the reader a lelsurely introduction to some basic
concepts, tools, and results of modei theory. In particular, we use the ul-
traproduct construction to derive the compactness theorem and to prove
fundamental preservation theorems. Principal congruence formulas are a
favorite model-theoretic tool of universal algebraists, and we use them in
the study of the sizes of subdirectly irreducible algebras. Next we prove
threc general results on the existence of a finite basis for an equational
theory. The last topic is semantic embeddings, a popular technique for
proving undecidability results. This technique is essentially algebraic in
nature, requiring no familiarity whatsoever with the theory of algorithms.
(The study of decidability has given surprisingly deep insight into the limi-
tations of Boolean product representations.)

At the end of several sections the reader will find selected references to
source material plus state of the art téxts or papers relevant to that section,
and at the end of the book one finds a brief survey of recent developments
and several outstanding problems.

The material in this book divides naturally into two parts. One part can be
described as “what every mathematician (or at least every algebraist) should
know about universal algebra.” It would form a short introductory course to
universal algebra, and would consist of Chapter I; Chapter II except for §4,
§12,§13, and the last parts of §11, §14; Chapter I'V §1-4; and Chapter V §1 and
the part of §2 leading to the compactness theorem. The remaining material is
more specialized and more intimately connected with current research in
universal algebra.

Chapters are numbered by Roman numerals I through V, the sections in a
chapter are given by Arabic numerals, §1,§2, etc. Thus I1§6.18 refers to item 18,
which happens to be a theorem, in Section 6 of Chapter II. A citation within
Chapter II would simply refer to this item as 6.18. For the exercises we use
numbering such as I1§5 Ex. 4, meaning the fourth exercise in §5 of Chapter IL.
The bibliography is divided into two parts, the first containing books and
survey articles, and the second research papers. The books and survey
articles are referred to by number, e.g., G. Birkhoff [3], and the research
papers by year, e.g., R. McKenzie [1978].
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Preliminaries

We have attempted to keep our notation and conventions in agreement
with those of the closely related subject of model theory, especially as
presented in Chang and Keisler’s Model Theory [8]. The reader needs only
a modest exposure to classical algebra; for example he should know what
groups and rings are.

We will -assume a familiarity with the most basic notions of set theory.
Actually, we use classes as well as sets. A class of sets is frequently called a
Jamily of sets. The notations A;, i € I, and (A);.; refer to a family of sets
indexed by a set 1. A naive theory of sets and classes is sufficient for our
purposes. We assume the reader is familiar with membership (€), set-builder
notation ({—:—}), subset (<), union (U), intersection (n), difference (—),
ordered n-tuples ({x,, . . . ,x,)), (direct) products of sets (4 x B, [ |;.; 4;), and
(direct) powers of sets (A"). Also, it is most useful to know that

(a) concerning relations:
(i) an n-ary relation on a set A is a subset of A";
(i) if n = 2 it is called a binary relation on 4;
(iii) the inverse r” of a binary relation r on A is specified by {(a,b) € r™ iff
- (ba)er;
(iv) the relational product r - s of two binary relations r, s on A is given
by: (a,b) Ere snﬁ”for some ¢, {a,c) €r,{cb) €s5;
(b) concerning functions: .
(i) a function f from a set A to a set B, written f:4 — B, is a subset
of A x B such that for each a € A4 there is exactly one b e B with
{a,b) € f; in this case we write f(a) = b or f:a+> b;
(i1) the set of all functions from A to B is denoted by B4;
(iii) the function f € B4 is injective (or one-to-one) if f(a,) = f(a,) =
a; =da;,
(iv) the function f € B* is surjective (or onto) if for every b € B there is
an a € A with f(a) =
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(v) the function f € B4 is bijective if it is both injective and surjective;
(vi) for fe BAand X < A, f(X) = {be B: f(a) = b for some ae X};
(vii) for fe B*and Y= B, f " (Y) = {ac A: f(a)e Y}; »
(viii) for f:A — Band g:B — C,letg o f: A — C be the function defined
by (g ° f)(a) = g(f(a)). [This does not agree with the relational
product defined above—but the ambiguity causes no problem in
practice.];
(c) given a family F of sets, the union of F, | JF, is deﬁned by ae [ JF iff

a € A for some A € F (define the intersection of F, [|F, dually);

(d) a chain of sets C is a family of sets such that for each 4,B e C either

AS BorBgc A;

(e) Zorn's lemma says that if F is a nonempty family of sets such that for
each chain C of members of F there is a member of F containing | JC (ie.,

C has an upper bound in F) then F has a maximal member M (ie, M e F

and M < A € F implies M = A);

(f) concerning ordinals:

(i) the ordinals are generated from the empty set (f using the operations
of successor (x* = x u {x}) and union;

(i) 0=, 1 =0% 2=17, etc; the finite ordinals are 0,1, ...; and
n={0,1,...,n— 1}; the natural numbers are 1,2,3, . . ., the nonzero
finite ordinals;

(iii) the first infinite ordinal is w = {0,1,2, .. .};

(1v) the ordinals are well-ordered by the relation €, also called <;

(g) concerning cardinality:

(i) two sets A and B have the same cardinality if there is a bijection
from A to B;

(ii) the cardinals are those ordinals x such that no earlier ordinal has
the same cardinality as x. The finite cardinals are 0,1,2,...; and @
is the smallest injinite cardinal;

(iii) the cardinality of a set A, written |A|, is that (unique) cardinal x
such that 4 and x have the same cardinality;

(iv) |4] - |B| = |4 x B|[= max(]4], |B|) if either is infinite and 4,B # JF].
AnB=gZ=|A|+|B|=[40UB| [=max(|4][B]) if either is
infinite];

(h) one usually recognizes that a class is not a set by noting that it is too
big to be put in one-to-one-correspondence with a cardinal (for example,
the class of all groups).

In Chapter IV the reader needs to know the basic definitions from point
set topology, namely what a topological space, a closed (open) set, a subbasis
(basis) for a topological space, a closed (open) neighborhood of a point, a
Hausdorff space, a continuous function, etc., are.

The symbol “=" is used to express the fact that both sides name the same
object, whereas “~” is used to build equations which may or may not be true
of particular elements. (A careful study of = is given in Chapter I1.)



CHAPTER 1
Lattices

In the study of the properties common to all algebraic structures (such as
groups, rings, etc.) and even some of the properties that distinguish one class
of algebras from another, lattices enter in an essential and natural way. In
particular, congruence lattices play an important role. Furthermore, lattices,
like groups or rings, are an important class of algebras in their own right,
and in fact one of the most beautiful theorems in universal algebra, Baker's
finite basis theorem, was inspired by McKenzie's finite basis theorem for
lattices. In view of this dual role of lattices in relation to universal algebra,
it is appropriate that we start with a brief study of them. In this chapter
the reader is acquainted with those concepts and results from lattice theory
which are important in later chapters. Our notation in this chapter is less
formal than that used in subsequent chapters. We would like the reader to
have a casual introduction to the subject of lattice theory.

The origin of the lattice concept can be traced back to Boole’s analysis of
thought and Dedekind’s study of divisibility. Schroeder and Peirce were also
pioneers at the end of the last century. The subject started to gain momentum
in the 1930’s, and was greatly promoted by Birkhoff’s book Lattice Theory
in the 1940’s. ;

§1. Definitions of Lattices

There are two standard ways of defining lattices—one puts them on the
same (algebraic) footing as groups or rings, and the other, based on the
notion of order, offers geometric insight.
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Definition 1.1. A nonempty set L together with two binary operations v and
A (read “join” and “meet” respectively) on L is called a lattice if it satisfies
the following identities:

Ll: (@) xvy~yvx

(b) xAyx yAx " (commutative laws)
L2: (a) xv(yvz)=(xvy)vz

(b) xA(yr2)x=(xAy)Az (associative laws)
L3: (@ xvx=~x

(b) xAx=~x (idempotent laws)
L4: (a) x=xv(xAy)

(b) x= xA(xvy) (absorption laws).

ExaMPLE. Let L be the set of propositions, let v denote the connective “or”
and A denote the connective “and”. Then L1 to L4 are well-known prop-
erties from propositional logic.

ExampLE. Let L be the set of natural numbers, let v denote the least coni-
mon multiple and A denote the greatest common divisor. Then properties
L1 to L4 are easily verifiable.

Before introducing the second definition of a lattice we need the notion
of a partial order on a set.

Definition 1.2. A binary relation < defined on a set A is a partial order on
the set A if the following conditions hold identically in A:

(i)a<a ' (reflexivity)
() a<bandb<aimplya=1>b (antisymmetry)
(iii) agsband b<cimplya<c — (transitivity).

If, in addition, for every a,bin A
(ivyvasborb<a

then we say < is a total order on A. A nonempty set with a partial order on
it is called a partially ordered set, or more briefly a poset, and if the relation
is a total order then we speak of a totally ordered set, or a linearly ordered
set, or simply a chain. In a poset A we use the expression a < b to mean
a<bbuta#b.

ExAMPLES. (1) Let Su(4) denote the power set of 4, i.e., the set of all subsets
of A. Then < is a partial order on Su(A4).

(2) Let A be the set of natural numbers and let < be the relation “divides.”
Then < is a partial order on A.

(3) Let A be the set of real numbers and let < be the usual ordering.
Then < is a total order on A4.
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Most of the concepts developed for the real numbers which involve only
the notion of order can be easily gengxalized tofarnally ordered sets. -

Definition 1.3. Let A be a subset of a poset P. An element p in P is an upper
bound for A if a < p for every a in A. An element p in P is the least upper
bound of A (Lu.b. of A), or supremum of A (sup A) if p is an upper bound of
A, and a < b for every a in A implies p < b (i.e., p is the smallest among the
upper bounds of A4). Similarly we can define what it means for p to be a
lower bound of A, and for p to be the greatest lower bound of A (gl.b. of A4),
also called the infimum of A (inf A). For a,b in P we say b covers a, or a is
covered by b, if a < b, and whenever a < ¢ < b it follows that a = cor ¢ = b.
We use the notation a < b to denote a is covered by b. The closed interval
[a,b] is defined to be the set of ¢ in P such that a < ¢ < b, and the open
interval (a,b) is the set of ¢ in P such that a < ¢ < b.

Posets have the delightful characteristic that we can draw pictures of them.
Let us describe in detail the method of associating a diagram, the so-called
Hasse diagram, with a finite poset P. Let us represent each element of P by a
small circle “o”. If a < b then we draw the circle for b above the circle for g,
joining the two circles with a line segment. From this diagram we can recap-
ture the relation < by noting that a < b holds iff for some finite sequence of
elements c,, . . . ,c, from P we have a=c¢; <c¢; """ ¢,—y < ¢, =b. We have
drawn some examples in Figure 1. It is not so clear how one would draw

O
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f) (g)
Figure 1 Examples of Hasse diagrams



