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PREFACE

The study of differential equations is a beautiful application of the ideas and techniques
of calculus to our everyday lives. Indeed, it could be said that calculus was developed
mainly so that the fundamental principles that govern many phenomena could be
expressed in the language of differential equations. Unfortunately, it was difficult to
convey the beauty of the subject in the traditional first course on differential equations
because the number of equations that can be treated by analytic techniques is very lim-
ited. Consequently, the course tended to focus on technique rather than on concept.

This book is an outgrowth of our opinion that we are now able to effect a radical
revision, and we approach our updated course with several goals in mind. First, the tra-
ditional emphasis on specialized tricks and techniques for solving differential equa-
tions is no longer appropriate given the technology that is readily available. Second,
many of the most important differential equations are nonlinear, and numerical and
qualitative techniques are more effective than analytic techniques in this setting.
Finally, the differential equations course is one of the few undergraduate courses where
it is possible to give students a glimpse of the nature of contemporary mathematical
research.

The Qualitative, Numeric, and Analytic Approaches

Accordingly, this book is a radical departure from the typical “cookbook” differential
equations text. We have eliminated most specialized techniques for deriving formulas
for solutions, and we have replaced them with topics that focus on the formulation of
differential equations and the interpretation of their solutions. To obtain an under-
standing of the solutions, we generally attack a given equation from three different
points of view.

One major approach we adopt is qualitative. We expect students to be able to
visualize differential equations and their solutions in many geometric ways. For exam-
ple, we readily use slope fields, graphs of solutions, vector fields, and solution curves
in the phase plane as tools to gain a better understanding of solutions. We also ask stu-
dents to become adept at moving among these geometric representations and more tra-
ditional analytic representations.

Since differential equations are readily studied using the computer, we also
emphasize numerical techniques. We assume that students have access to some sort of
technology that approximates solutions and graphs these solutions easily. Even if we
can find an explicit formula for a solution, we often work with the equation both
numerically and qualitatively to understand the geometry and the long-term behavior
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of solutions. When we can find explicit solutions easily (such as in the case of separa-
ble first-order equations or constant-coefficient, linear systems), we do the calculations.
But we never fail to examine the resulting formulas we obtain using qualitative and
numerical points of view as well.

Specific Changes

There are several specific ways in which this book differs from other books at this level.
First, we incorporate modeling throughout. We expect students to understand the mean-
ing of the variables and parameters in a differential equation and to be able to interpret
this meaning in terms of a particular model. Certain models reappear often as running
themes, and they are drawn from a variety of disciplines so that students with various
backgrounds will find something familiar.

We also adopt a dynamical systems point of view. Thus, we are always concerned
with the long-term behavior of solutions of an equation, and using all of the appropriate
approaches outlined above, we ask students to predict this long-term behavior of solu-
tions. In addition, we emphasize the role of parameters in many of our examples, and
we specifically address the manner in which the behavior of solutions changes as these
parameters are varied.

Like other texts, we begin with first-order equations, but the only analytic tech-
nique we use to find closed-form solutions is separation of variables (and, at the end of
the chapter, an integrating factor or two to handle certain linear equations). Instead, we
emphasize the meaning of a differential equation and its solutions in terms of its slope
field and the graphs of its solutions. If the differential equation is autonomous, we also
discuss its phase line. This discussion of the phase line serves as an elementary intro-
duction to the idea of a phase plane, which plays a fundamental role in subsequent
chapters.

We then move directly from first-order equations to systems of first-order differ-
ential equations. Rather than consider second-order equations separately, we convert
these equations to first-order systems. When these equations are viewed as systems, we
are able to use qualitative and numerical techniques more readily. Of course, we then
nse the information about these systems gleaned from these techniques to recover in-
formation about the solutions of the original equation.

We also begin the treatment of systems with a general approach. We do not im-
mediately restrict our attention to linear systems. Qualitative and numerical techniques
work just as easily when a system is nonlinear, and one can proceed a long way toward
understanding systems without resorting to algebraic iechniques. However, qualitative
ideas do not tell the whole story, and we are led naturally to the idea of linearization.
With this background in the fundamental geometric and qualitative concepts, we then
discuss linear systems in detail. As always, we not only emphasize the formula for the
general solution of a linear system but also the geometry of its solution curves and of
the related eigenvectors and eigenvalues.

While our study of systems requires the minimal use of some linear algebra, it is
definitely not a prerequisite. As we deal primarily with two-dimensional systems, we
easily develop all of the necessary algebraic techniques as we proceed. In the process,
we give considerable insight into the geometry of such topics as eigenvectors and
eigenvalues.
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These topics form the core of our approach. However, there are many additional
topics that one would like to cover in the course. Consequently, we have included dis-
cussions of forced second-order equations, nonlinear systems, Laplace transforms, nu-
merical methods, and discrete dynamical systems. Although some of these topics are
quite traditional, we always present them in a manner that is consistent with the philos-
ophy developed in the first half of the text.

At the end of each chapter, we have included several “labs.” Doing detailed nu-
merical experimentation and writing reports has been our most successful modification
of the traditional course at Boston University. Good labs are tough to write and to
grade, but we feel that the benefit to students is extraordinary.

Pathways Through This Book

There are a number of possible tracks that instructors can follow in using this book. We
feel that Chapters 1-3 form the core (with the possible exception of Sections 2.5 and
3.8, which cover systems in three dimensions). Most of the later chapters assume fa-
miliarity with this material. Certain sections such as Section 1.7 (bifurcations) and Sec-
tion 1.9 (changing variables) may be skipped if some care is taken in choosing material
from subsequent sections. However, the material on phase lines and phase planes, qual-
itative analysis, and solutions of linear systems is central.

A typical track for an engineering-oriented course would follow Chapters 1-3
(perhaps skipping Sections 1.9, 2.5, and 3.8). These chapters will take roughly two-
thirds of a semester. The final third of the course might cover Sections 4.1-4.3 (forced,
second-order linear equations and resonance), Section 5.1 (linearization of nonlinear
systems), and Chapter 6 (Laplace transforms). Chapters 4 and 5 are independent of
each other and can be covered in either order. In particular, Section 5.1 on linearization
of nonlinear systems near equilibrium points forms an excellent capstone for the mate-
rial on linear systems in Chapter 3.

Incidentally, it is possible to cover Sections 6.1 and 6.2 (Laplace transforms for
first-order equations) immediately after Chapter 1. As we have learned from our col-
leagues in the College of Engineering at Boston University, some engineering pro-
grams teach a circuit theory course that uses the Laplace transform at an earlier point
than is typically the case. Consequently, Sections 6.1 and 6.2 are written so that the dif-
ferential equations course and such a circuits course could proceed in parallel. How-
ever, if possible, we recommend waiting to cover Chapter 6 entirely until after the
material in Sections 4.1-4.3 has been discussed.

Instructors may wish to substitute material on discrete dynamics (Chapter 8) for
Laplace transforms. A course for students with a strong background in physics might
involve more of Chapter 5, including a treatment of Hamiltonian (Section 5.3) and gra-
dient systems (Section 5.4). A course geared toward applied mathematics might in-
clude a more detailed discussion of numerical methods (Chapter 7).

Changes in the First Edition

We have been quite pleased with the reception that the preliminary edition of this book
has enjoyed since its publication in 1995. We are especially indebted to the large num-
ber of readers and instructors who made comments about various points in the earlier
edition. Accordingly, we have made some changes in this edition. The most significant
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changes include more thorough treatments of forcing and resonance for second-order
equations and a revised treatment of Laplace transforms. The material in Chapter 2 has
been extensively rewritten to follow more closely our intent to introduce analytic, qual-
itative, and numerical methods for systems at an early stage. Two appendices have been
added. The first is an alternate treatment of first-order linear equations and can be used
in place of Section of 1.8. The second appendix is a review of complex numbers and
Euler’s formula.

Most of the other changes involve only minor rearrangements of topics so that
most instructors can avoid skipping sections within a chapter. As with any significant
revision of an existing course, we anticipate that this book will continue to evolve in
future editions. We encourage comments, suggestions, and criticism. The best way to
comment is to send e-mail to odes@math.bu.edu. We’ll do our best to acknowledge
the e-mail, but we will definitely read and consider every comment,

Our Website and Ancillaries

Readers and instructors are invited to make extensive use of our web site
http://math.bu.edu/odes

At this site we have posted an on-line instructor’s guide that includes discussions
of how we use the text. We have also posted sample syllabi contributed by users at
various institutions as well as information about workshops and seminars dealing with
the teaching of differential equations. We also maintain a list of errata at this site. The
Instructor’s Guide with Solutions, available to instructors who have adopted the text for
class use, contains a hardcopy of the on-line guide along with the solutions to all the
problems. The Student Solutions Manual contains the solutions to all odd-numbered
problems in the text.

Our publisher, Brooks/Cole, also maintains the DiffEQ Resource Center at

http://diffeq.brookscole.com

This site contains a wealth of information about the teaching and learning of dif-
ferential equations, including an extensive array of laboratory and project ideas and
links to a number of other sites related to the teaching of differential equations.

The Boston University Differential Equations Project

This boek is a product of the now complete National Science Foundation Boston Uni-
versity Differential Equations Project sponsored by the National Science Foundation
(NSF Grant DUE-9352833) and Boston University. The goal of that project was to re-
think the traditional, sophomore-level differential equations course. We are especially
thankful for that support.

Paul Blanchard
Robert L. Devaney
Glen R. Halli
Boston University
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A NOTE TO THE STUDENT

This book is probably different from most of your previous mathematics texts. If you
thumb through it, you will see that there are few “boxed” formulas, no margin notes,
and very few n-step procedures. We’ve written the book this way because we think that
you are now at a point in your education where you should be learning to identify and
work effectively with the mathematics inherent in everyday life. As you pursue your
careers, no one is going to ask you to do all of the odd exercises at the end of some em-
ployee manual. They are going to give you some problem whose mathematical compo-
nent may be difficult to identify and ask you to do your best with it. One of our goals in
this book is to start preparing you for this type of work by avoiding artificial algorith-
mic exercises.

Our intention is that you will read this book as you would any other text, then
work on the exercises, rereading sections and examples as necessary. Even though
there are no template examples, you will find the discussions full of examples. Since
one of our main goals is to demonstrate how differential equations are used to model
physical systems, we often start with the description of a physical system, build a
model, and then study the model to make conclusions and predictions about the origi-
nal system. Many of the exercises ask you to produce or modify a model of a physical
system, analyze it, and explain your conclusions. This is hard stuff, and you will need
to practice. Since the days when you could make a living plugging and chugging
through computations are over (computers do that now), you will need to learn these
skills, and we hope that this book helps you develop them.

Another way in which this book may differ from your previous texts is that we
expect you to make judicious use of a graphing calculator or a computer as you work
the exercises and labs. The computer won’t do the thinking for you, but it will provide
you with numerical evidence that is essentially impossible for you to get in any other
way. One of our goals is to give you practice as a sophisticated consumer of computer
cycles as well as a skeptic of computer results.

Incidentally, one of the authors is known to have made a mistake or two in his life
that the other two authors have overlooked. So we maintain a very short list of errata at
our web site http://math.bu.edu/odes. Please check this page if you think that some-
thing you have read is not quite right.

Finally, you should know that the authors take the study of differential equations
very seriously. However, we don’t take ourselves very seriously (and we certainly don’t
take the other two authors seriously). We have tried to express both the beauty of the
mathematics and some of the fun we have doing mathematics. If you think (some of?)
the jokes are old or stupid, you're probably right.

Xi



xil A NOTE TO THE STUDENT

All of us who worked on this book have learned something about differential
equations along the way, and we hope that we are able to communicate our apprecia-
tion for the subject’s beauty and range of application. We would enjoy hearing your
comments. Feel free to send us e-mail at odes@math.bu.edu. We sometimes get busy
and cannot always respond, but we do read and appreciate your feedback.

We had fun writing this book. We hope you have fun reading it.

G.RH., RLD., PB.
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FIRST-ORDER
DIFFERENTIAL EQUATIONS

This book is about how to predict the future. To do so, all we have is a
knowledge of how things are and an understanding of the rules that govern the
changes that will occur. From calculus we know that change is measured by
the derivative, and using the derivative to describe how a quantity changes is
what the subject of differential equations is all about.

Turning the rules that govern the evolution of a quantity into a differential
equation is called modeling, and in this chapter we study many models. Our
goal is to use the differential equation to predict the future value of the quantity
being modeled.

There are three basic types of techniques for making these predictions.
Analytical techniques involve finding formulas for the future values of the
quantity. Qualitative techniques involve obtaining a rough sketch of the graph
of the quantity as a function of time as well as a description of its long-term
behavior. Numerical techniques involve doing arithmetic (or having a
computer do arithmetic) that yields approximations of the future values of the
quantity. We introduce and use all three of these approaches in this chapter.
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1.1

CHAPTER 1 First-Order Differential Equations

MODELING VIA DIFFERENTIAL EQUATIONS

The hardest part of using mathematics to study an application is the translation from
real life into mathematical formalism. This translation is usually difficult because it
involves the conversion of imprecise assumptions into very precise formulas. There is
no way to avoid it. Modeling is difficult, and the best way to get good at it is the same
way you get to play Carnegie Hall—practice, practice, practice.

What Is a Model?

It is important to remember that mathematical models are like other types of models.
The goal is not to produce an exact copy of the “real” object but rather to give a repre-
sentation of some aspect of the real thing. For example, a portrait of a person, a store
mannequin, and a pig can all be models of a human being. None is a perfect copy of
a human, but each has certain aspects in common with a human. The painting gives
a description of what a particular person looks like; the mannequin wears clothes as a
person does; and the pig is alive. Which of the three models is “best” depends on how
we use the model—to remember old friends, to buy clothes, or to study biology.

The mathematical models we study are systems that evolve over time, but they
often depend on other variables as well. In fact, real-world systems can be notoriously
complicated—the population of rabbits in Wyoming depends on the number of coyotes,
the number of bobcats, the number of mountain lions, the number of mice (alternative
food for the predators), farming practices, the weather, any number of rabbit diseases,
etc. We can make a model of the rabbit population simple enough to understand only
by making simplifying assumptions and lumping together effects that may or may not
belong together.

Once we’ve built the model, we should compare predictions of the model with
data from the system. If the model and the system agree, then we gain confidence that
the assumptions we made in creating the model are reasonable, and we can use the
model to make predictions. If the system and the model disagree, then we must study
and improve our assumptions. In either case we learn more about the system by com-
paring it to the model.

The types of predictions that are reasonable depend on our assumptions. If our
model] is based on precise rules such as Newton’s laws of motion or the rules of com-
pound interest, then we can use the model to make very accurate quantitative predic-
tions. If the assumptions are less precise or if the model is a simplified version of the
system, then precise quantitative predictions would be silly. In this case we would
use the model to make qualitative predictions such as “the population of rabbits in
Wyoming will increase ....” The dividing line between qualitative and quantitative pre-
diction is itself imprecise, but we will see that it is frequently better and easier to make
qualitative use of even the most precise models.

Some hints for model building
The basic steps in creating the model are

Step 1 Clearly state the assumptions on which the model will be based. These assump-
tions should describe the relationships among the quantities to be studied.

Step 2 Completely describe the variables and parameters to be used in the model —
“you can’t tell the players without a program.”
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Step 3 Use the assumptions formulated in Step 1 to derive equations relating the quan-
tities in Step 2.

Step 1 is the “science” step. In Step 1, we describe how we think the physical sys-
tem works or, at least, what the most important aspects of the system are. In some
cases these assumptions are fairly speculative, as, for example, “rabbits don’t mind be-
ing overcrowded.” In other cases the assumptions are quite precise and well accepted,
such as “force is equal to the product of mass and acceleration.” The quality of the as-
sumptions determines the validity of the model and the situations to which the model
is relevant. For example, some population models apply only to small populations in
large environments, whereas others consider limited space and resources. Most im-
portant, we must avoid “hidden assumptions” that make the model seem mysterious or
magical.

Step 2 is where we name the quantities to be studied and, if necessary, describe
the units and scales involved. Leaving this step out is like deciding you will speak your
own language without telling anyone what the words mean.

The quantities in our models fall into three basic categories: the independent
variable, the dependent variables, and the parameters. In this book the independent
variable is (almost) always time. Time is “independent” of any other quantity in the
model. On the other hand, the dependent variables are quantities that are functions of
the independent variable. For example, if we say that “position is a function of time,”
we mean that position is a variable that depends on time. We can vaguely state the goal
of a model expressed in terms of a differential equation as “Describe the behavior of
the dependent variable as the independent variable changes.” For example, we may ask
whether the dependent variable increases or decreases, or whether it oscillates or tends
to a limit.

Parameters are quantities that don’t change with time (or with the independent
variable) but that can be adjusted (by natural causes or by a scientist running the exper-
iment). For example, if we are studying the motion of a rocket, the initial mass of the
rocket is a parameter. If we are studying the amount of ozone in the upper atmosphere,
then the rate of release of fluorocarbons from refrigerators is a parameter. Determining
how the behavior of the dependent variables changes when we adjust the parameters
can be the most important aspect of the study of a model.

In Step 3 we create the equations. Most of the models we consider are expressed
as differential equations. In other words, we expect to find derivatives in our equations.
Look for phrases such as ‘“rate of change of ...” or “rate of increase of ....” since rate
of change is synonymous with derivative. Of course, also watch for “velocity” (deriva-
tive of position) and “acceleration” (derivative of velocity) in models from physics. The
word is means “equals” and indicates where the equality lies. The phrase “A is propor-
tional to B” means A = kB, where k is a proportionality constant (often a parameter in
the model).

An important rule of thumb we use when formulating models is: Always make
the algebra as simple as possible. For example, when modeling the velocity v of a cat
falling from a tall building, we could assume:

« Air resistance increases as the cat’s velocity increases.

This assumption says that air resistance provides a force that counteracts the force of
gravity and that this force increases as the velocity v of the cat increases. We could



