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PREFACE

This volume contains the proceedings of the advanced school on “Stochastics in
Combinatorial Optimization” held at CISM, Udine, Italy from September 22 to 25, 1986.
The planning of the school was motivated by the observation that there has been a grow-
ing interest in developing stochastic techniques to solve deterministic problems (e.g.
“simulated annealing”) and also by the fact that many real life problems are inherently
stochastic leading to stochastic combinatorial optimization models (e.g. “stochastic
vehicle routing”).

Aim of the school was to present the state of the art for both aspects and to
investigate possible common links. The interest in this subject s witnessed by the
several lectures given by the speakers. Various points of view and results are reported
in the papers collected in this volume.

A first group of papers deals with randomized methods for deterministic problems.
S.B. Gelfand and S.K. Mitter discuss the properties of simulated annealing techniques.
F. Maffioli first considers in general the effect of using randomness to get efficient
algorithms and then presents particular randomized heuristics for NP-hard problems.
Problems of establishing good stopping rules for stochastic algorithms are investigated
by C.G. Bender, A.H.G. Rinnooy Kan and C. Vercellis.

Stochastic versions of combinatorial optimization problems are discussed tn var-
tous papers. A.R. Odoni analyzes facility location problems in stochastic networks
where travel times are random or queuing phenomena may arise. P. Mirchandant and
H. Soroush address the problem of determining optimal paths, multicommodity flows
and traffic equilibria in a stochastic environment and with nonlinear utility functions.
A survey of models concerning the shortest path problem in stochastic networks is pre-
sented by G. Andreatta. Results concerning the computational complezity of the PERT,
shortest path and mazimum flow problems in different classes of stochastic networks
are summarized by J. Kamburowski. The paper of P. Jaillet deals with recent results
on the probabilistic traveling salesman problem (PTSP) and with a generalization of
it to the probabilistic vehicle routing problem. Heuristic methods for the PTSP are



vi

investigated by F. Rosst and I. Gavioli.

Other contributions do not ezactly fit into either category. R. Hassin outlines a
computing scheme for some network problems with random edge lengths that “almost
surely” leads to computational improvements over existing algorithms. R. Szkatula and
M. Libura tnvestigate probabilistic properties of greedy-like algorithms for the knapsack
problem and W. Woess outlines the properties of random walks on infinite graphs.

We would like to ezpress our gratitude to those institutions who made possible
the school : the Science Sector of Unesco, the Committee for Economics and the
Committee for Mathematics of the Italian Research Council (CNR) for their financial
contributions, and the International Center for Mechanical Sciences (CISM) for the
organizational support. We would also like to thank the participants for the friendly
atmosphere and the active interest shown during the school.

Giovanni Andreatta
Francesco Mason
Paolo Serafini



TABLE OF CONTENTS

Preface

Simulated Annealing
S B Gelfand & S K Mitter

Randomization for More Efficient Algorithms
F Maffioli

Randomized Heuristics for NP-Hard Problems
F Maffioli

Stochastic Optimization Methods
C G E Boender, A H G Rinnooy Kan & C Vercellis

Stochastic Facility Location Problems
A R Odoni

Routes and Flows in Stochastic Networks
P Mirchandani & H Soroush

Shortest Path Models in Stochastic Networks
G Andreatta

An Overview of the Computational Complexity of the PERT
Shortest Route and Maximum Flow Problems in Stochastic Networks

J Kamburowski

Stochastic Routing Problems
P Jaillet

Aspects of Heuristic Methods in the “Probabilistic Travelling

Salesman Problem™
F A Rossi & I Gavioli

52

76

94

128

178

187

197

214

vii



viii

A Computing Scheme for Network Problems with Random

Edge Lengths
R Hassin

On Probabilistic Properties of Greedy -like Algorithms for the
Binary Knapsack Problem
K Szkatuta & M Libura

Random Walks on Infinite Graphs
W Woess

228

233

255



SIMULATED ANNEALING
by

Saul B. Gelfandl
Sanjoy K. Mitter2

1Deplrtment of Electrical Engineering, Purdue University, Lafayette, Indiana

2Depurtnent of Electrical Engineering and Computer Science, Massachusetts
Institute of Technology, Cambridge, MA 02139

This research has been supported by the Air Force Office of Scientific
Research under grant AFOSR-85-0227 and the Army Research Office under grants
DAAG29-84-K-0005 and DAAL03-86-K-1071.



CHAPTER I
INTRODUCTION

Algorithms for finding a global extremum of a real-valued function may
be classified into two groups: deterministic and random. The distinction here
is of course that the random or Monte-Carlo algorithms make use of pseudo
random variates whereas the deterministic algorithms do not. The earliest
global optimization algorithms were of the deterministic type and were
associated with evaluating the cost function at points on a grid. One
drawback of these methods is that they typically require certain prior
information about the cost function such as a Lipshitz constant. Most global
optimization algorithms are of the random type and are related to the so-
called multistart algorithm. In this approach, a local optimization algorithm
is run from different starting points which are selected at random, usually
from a uniform distribution on the domain of the cost function. See [5], [29]
for a discussion of global optimization algorithms.

Recently, motivated by hard combinatorial optimization problems such
as arise in computer design and operations research, Kirkpatrick et. al. [19]
and independently Cerny [3] have proposed a different kind of random
algorithm called simulated annealing. The annealing algorithm is based on an
analogy between large scale optimization problems and statistical mechanics.
For our purposes this analogy consists simply of viewing the cost function as
an energy function defined on a finite state space of an imaginary physical
system. The annealing algorithm is then seen as a variation on a Monte-
Carlo algorithm developed by Metropolis et. al. [25] for making statistical
mechanics calculations, which we now describe. It is well-known that the
states of a physical system in thermal equilibrium obey a Gibbs distribution
o< exp[—U(*)/T], where U(*) is an energy function and T is the temperature.
The Metropolis algorithm was developed for obtaining samples from such a
Gibbs distribution and for computing estimates of functionals averaged over
the Gibbs distribution. The Metropolis algorithm proceeds as follows:

Given a state i of the system, select a candidate state j in a random
manner corresponding to a small perturbation of the system, and



compute the change in energy AU = U(j) — U(i). If AU < 0 accept
state j as the new state for the next iteration of the algorithm. If
AU > 0 accept state j with probability exp[— AU/T]; otherwise the
algorithm starts at state i for the next iteration.

The annealing algorithm consists of identifying the cost function to be
minimized with the energy function U(*) and taking the temperature T as a
function of time and slowly lowering it to zero. Suppose that the distribution
of a candidate state is independent of past states given the current state.
Then it is clear that the Metropolis algorithm simulates the sample paths of a
Markov chain, and it can be shown that if the candidate states are selected
in a suitable manner then this chain infact has a Gibbs distribution
o exp[— U(i)/T] as its (unique) equilibrium distribution (see Chapter 2 for
details). Furthermore as the temperature T is decreased to zero the Gibbs
distribution concentrates more and more on the lower energy states. The
motivation behind the annealing algorithm is that if T—0 slowly enough such
that the system is never far away from equilibrium, then presumably there is
convergence (in some probabilistic sense) to the global minima of U(*).

The annealing algorithm stands in contrast to heuristic methods for
combinatorial optimization which are based on iterative improvement,
allowing only decreases in the cost function at each iteration. Iterative
improvement algorithms in statistical mechanics terms correspond to rapidly
quenching a system from a high to a very low temperature. Such quenching
can result in the system getting trapped in a so-called metastable state, and
analogously the iterative improvement algorithm getting trapped in a strictly
local minimum of the cost function. On the other hand, the annealing
algorithm corresponds to slowly cooling a system. Such cooling should result
in the system spending most of its time among low energy states and
analogously the annealing algorithm finding a global or nearly global
minimum of the cost function.

The annealing algorithm as described above is suitable for combinatorial
optimization. Motivated by optimization problems with continuous variables
which arise in image processing problems, Geman and independently
Grenander [13] have proposed a diffusion-type algorithm called the Langevin
algorithm (as coined by Gidas [11]). Consider the diffusion solution of the
Langevin equation

dx(t) = — VU(x(t))dt + V2T dw(t)

where U(*) is now a smooth function on r-dimensional Euclidean space (again
called energy), T is a positive constant (again called temperature), and w(*) is



a standard r-dimensional Wiener process. The Langevin equation describes
the motion of a particle in a viscous fluid. The Langevin algorithm consists of
identifying the cost function to be mininized with the energy function U(*)
and taking the temperature T as a function of time and slowly lowering it to
zero. Now it is well known that under suitable conditions on U(*) the
diffusion solution of the Langevin equation has a Gibbs density
x exp[— U(*)/T] as its (unique) equilibrium density, and as the temperature T
is decreased to zero this density becomes more and more concentrated on the
lower energy states. Like the annealing algorithm, the motivation behind the
Langevin algorithm is that if T—0 slowly enough such that the system is
never far away from equilibrium, then presumably there is convergence (in
some probabilistic sense) to the global minima of U(*).

The annealing algorithm has been applied with varying success to a wide
range of problems including circuit placement and wire routing for VLSI chip
design [19], image reconstruction [8], and assorted hard combinatorial
problems which arise in operations research (3], [12], [18], [19]. There has also
been intense theoretical interest in both the annealing algorithm (8], [10], [11],
(14], [15], [26], [31] and the Langevin algorithm [4], [9], [11], [15], [21].



CHAPTER II
FINITE STATE ANNEALING TYPE ALGORITHMS

2.1 Introduction to the Annealing Algorithm

In Chapter 1 we briefly described the annealing algorithm and discussed
the heuristic motivation based on the connection that Kirkpatrick [19] has
suggested between statistical mechanics and large-scale optimization
problems. Mathematically, the annealing algorithm consists of simulating a
nonstationary finite-state Markov chain whose state space is the domain of
the cost function (called energy) to be minimized. In this Section we shall
discuss in detail the annealing algorithin and describe some of the
considerable literature which has been devoted to its analysis.

We first give some standard finite state space Markov chain notation (c.f.
(6], [7]). Let X be a finite set. P = [p;j];cx is a stochastic matrix on ¥ if
pij > 0 for all i,j€X and

Spy=1 VieX.

JEL
{plek+1)y — {[pigk'k”)]} are the 1-step transition matrices for a Markov chain
{&; with state space X if for every k€N pPkk+1) is 2 stochastic matrix on ¥
and

P{€es1 = il6 =i} =p{**  (if P{¢ =i} >0) (2.1)
for all i,jEX. Conversely, given a sequence {P(k'k“)} = {[pi(Jk'kJ'd)]A} of
stochastic matrices on ¥ we can construct on a suitable probability space
(A.F,P) a Markov chain {£,} with state space ¥ which satisfies (2.1). For
each d€Nlet

plik+d) _ plkk+1) . ... . plktd—1k+d)

P(k,k+d (k,k+d

) = [P )] is a stochastic matrix on . and
P{€sq =ile =i} = pﬁ“"‘*d’ (if P{& =i} >0)

for all i,j€X. It will be convenient to have a fixed version of the conditional
probability of &4 given &, which we define by



P{{ €Al =i} = B Pi(,k’Hd)
JEA
for all i€X and ACE.

We now define the annealing algorithm. Let U(*) be a nonnegative
function on X, called the energy function. The goal is to find a point in X
which minimizes or nearly minimizes U(*). Let {T)} be a sequence of positive
numbers, called the temperature schedule. Let Q = [q;;] be a stochastic matrix
on Y. Now let {{,} be the Markov chain with state space ¥ and 1-step

transition matrices {P(k'k“)} = {[pigk'kﬂ)]} given by

U(j) — Ui : : :
q;j exp [— —('L)T——Ql if U@j) > U(i)
k
Pi(,k'kH) =g if UG) <U@), j= (2.2)
1 — E pik,k+1) if j=1i
0

for all i,j€X. {&} shall be called the annealing chain. For each dE€N let
Q4 = [qigd)]. Recall that Q is irreducible if for every i,jEX there exists a dEN
such that qigd) > 0. Also, Q is symmetric if q; = q; for all i,j€¥. In the
special case where Q is irreducible and symmetric and Ty = T, a positive
constant, {{,} is the stationary Markov chain introduced by Metropolis et. al.
[25] for computing statistics of a physical system in thermal equilibrium at
temperature T. It was Kirkpatrick et. al. [19] and Cerny [3] who suggested
that the Metropolis scheme could be used for minimizing U(*) by letting
T =T, — 0. We shall call the algorithm which simulates the sample paths
of {&} with T,—0 the annealing algorithm.

The heuristic motivation behind the annealing algorithm was discussed
(briefly) in Chapter 1. Here we give the motivation in more mathematical
terms. Suppose that Q is irreducible and symmetric, and let {7} be the
stationary chain with 1-step (stationary) transition matrix PT = [p;jr] given by
the r.h.s of (2.2) with T, = T, a positive constant. Then it can be shown that
PT has an invariant Gibbs vector 11T = [1T] (a row vector), i.e.,

T = nTpT

where
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JEX

This follows from the detailed reversibility

WiTpi’jr = ﬂijj’ir Vijex .
Furthermore, Q irreducible and symmetric implies that {£7} is an irreduciblet
(and aperiodic) chain and by the Markov Convergence Theorem [6, p. 177]

Jim P{¢T =i} =nT viex. (2.3)

Let S be the set of global minima of U(*), i.e.
S = {ieX: U(i) < U(j) VjieL}.
Now

lim 7T =7 Ve (2.4)
T—0

where [1" = [711‘] is a probability vector with support in S. In view of (2.3)
and (2.4) the idea behind the annealing algorithm is that by choosing
T = T, —0 slowly enough hopefully

T,

P{ =i} =R (k large) (2.5)
and then perhaps
Jim P& =i} = AR ATS) (2.6)

and consequently &, converges in probability to S.

In Chapter 1 we roughly described the procedure by which the sample
paths of the annealing chain are simulated. It is seen that the Q matrix
governs the small perturbations in the system configurations which are then
accepted or rejected probabilistically depending on the corresponding energy
changes and the temperature. More precisely, the annealing chain may be
simulated as follows. Suppose & =i. Then generate a Y-valued random
variable 7 with P{r] =j}= qij- Suppose 77 =j. Then set

tA stationary chain is irreducible if its 1-step (stationary) transition matrix is
irreducible.



i if Ug) < U()
— U(i

Exr = 13 if U(j) > U(i) with probability exp [— L T
k

i else

There are two in depth numerical studies of simulated annealing of which
we are aware. Johnson et. al. [18] applied the annealing algorithm to four
well-studied problems in combinational optimization: graph partitioning,
number partitioning, graph coloring, and the travelling salesman problem.
They compare the annealing algorithm with the best of the traditional
algorithms for each problem. They found that although annealing is able to
produce quite good solutions on three of the four problems, only on one of the
four (graph partitioning) does it outperform the best of its rivals. Golden and
Skiscim [12] have tested the annealing algorithm on routing and location
problems, specifically the travelling salesman problem and the p-median
problem. They conclude that there are more efficient and effective heuristics
for these problems.

We shall now outline the convergence results on the annealing algorithm
which are known to us. We refer the reader to the specific papers for full
details.

Geman and Geman [8] were the first to obtain a convergence result for
the annealing algorithm. The consider a version of the annealing algorithm
which they call the Gibbs sampler. They show that for temperature schedules
of the form

__c
log k
that if ¢ is sufficiently large then (2.6) is obtained.

Ty (k large)

Gidas [10] also considers the convergence of the annealing algorithm and
similar algorithms based on Markov chain sampling methods related to the
Metropolis method.

We next discuss the work of Mitra et. al. [26]. The idea behind their
work is similar to that of Geman and Geman and also Gidas in that they
show that for temperature schedules which vary slowly enough the annealing
chain reaches ‘‘quasiequilibrium”, i.e., something like (2.5) holds. In order to
state Mitra et. al.’s result we will need the following notation. Let



N(i) = {jeX: q; >0} VieX.
Let Sy be the set of states that are local maxima of U(), i.e.,
Sm = {i€X: U(i) > U(§) VJEN()}.
Let

r = min max d(i,j)
IEC\Sy JET

where d(i,j) is the minimum number of steps to get from state i to state j.

Finally, let

= i) — U]
ax max [UG) — U()l

Here is Mitra et. al.’s result:

Theorem 2.1 (Mitra et. al. [26]) Assume Q is irreducible and symmetrict.
Let Ty |0 and

s rL
V) exp |— =o00. (2.7)
k=1 Tkr—l
Then
Jim P{& =i} = . YiEL. (2.8)
Remarks

(1) If Ty = c/log k then (2.7) holds iff ¢ > r L.
(2) An estimate of the rate of convergence in (2.8) is obtained for
annealing schedules of the form Ty = c/log k for ¢ > r L. Let

W = min min g;;
ies jenN()

~ = min U(i) — min U(j) .
ier\s (i) e (3)
It is shown that

1

Pll=i} =m + 0| iy

] as k—o0 (2.9)
where

tor just q;; > 0 iff gji > O for all i,jEX
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wl‘

2l

&=— =+ .
o L/c ? B ¢

Since o and [ are increasing and decreasing respectively with increasing ¢, it

is suggested that ¢ > r L be chosen to maximize min{c,5}.

We next discuss the work of Hajek [14]. The idea behind his work is
that for temperature schedules which vary slowly enough, the annealing chain
escapes from local minima of U(*) at essentially the same rate as for a
constant temperature. In order to state Hajek’s result we will need the
following notation. We shall say that given states i and j, i can reach j if
there exists a sequence of states i =i,,...,i, =j such that q; ; >0 for all
n =0,.,p—1; if U(i,) <E (a nonnegative number) for all n =0,..,p then we
shall say that i can reach j at height E. We shall say that the annealing
chain is strongly irreducible if i can reach j for all i,jEX. Clearly, strong
irreducibility is equivalent to Q irreducible, but we introduce strong
irreducibility to conform with Hajek’s notation. We shall also say that the
annealing chain is weakly reversible if for every E > 0, i can reach j at energy
E iff j can reach i at energy E, for all i,jEX. Let S be the states that are
local minima of U(*), i.e.,

Sm={i€X: U(i) <U() VjieN()} .

For each i€S\S let A(i) be the smallest number E such that i can reach some
JET with U(j) < U(i) at height U(i) + E. A(i) is the “depth” of the local (but
not global) minimum i. Let

A = A . 2.10
Dax, (i) (2.10)

Here is Hajek’s result:

Theorem 2.2 (Hajek [14]) Assume that the annealing chain is strongly
irreducible and weakly reversible. Let T, |0. Then

klim P{&€S) =1 (2.11)

e (2.12)




