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Preface

This text deals with three basic techniques for constructing models of
Zermelo-Fraenkel set theory: relative constructibility, Cohen’s forcing, and
Scott-Solovay’s method of Boolean valued models. Our main concern will be
the development of a unified theory that encompasses these techniques in one
comprehensive framework. Consequently we will-focus on certain funda-
mental and intrinsic relations between these methods of model constructlon
Extensive apphcatlons will not be treated here.

This text is a continuation of our book, “Introduction to Axnomauc Set
Theory,” Springer-Verlag, 1971 ; indeed the two texts were originally planned
as a single volume. The content of this volume is essentially that of a course
taught by the first author at the University of Illinois in the spring of 1969,
From the first author’s lectures, a first draft was prepared by Klaus Gloede
with the assistance of Donald Pelletier and the second author. This draft was

" then revised by the first author assisted by Hisao Tanaka.

The introductory material was prepared by the second author who was also
responsible for the general style of exposition throughout the text. We have
included in theintroductory material all the results from Boolean algebra and
topology that we need. When notation from our first volume is introduced, it
is accompanied with a definition, usually in a footnote. Consequently a
reader who is familiar with elementary set theory will find this text quite
self-contained. '

We again express our deep appreciation to Klaus Gloede and Hisao -
Tanaka for their interest, encouragement, and hours of patient hard work in
making this volume a reality, We also thank our typist, Mrs. Carolyn
Bloemker, for her care and concern in typing the final manuscnpt

Urbana, Illinois G. ;fal(euti
March 23, 1972 ' W. M. Zaring
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Introduction

In this book, we present a useful technique for constructing models of
Zermelo-Fraenkel set theory. Using the notion of Boolean valued relative
constructibility, we will develop a theory of model construction. One feature
of this theory is that it establishes a relationship between Cohen’s method of
forcing and Scott-Solovay’s method of Boolean valued models.

The key to this theory is found in a rather simple correspondence between
partial order structures and complete Boolean algebras. This correspondence
is established from two basic facts; first, the regular open sets of any topological
space form a complete Boolean algebra; and second, every Boclean algebra
has a natural order. With each partial order structure P, we associate the
complete Boolean algebra of regular open sets determined by the order
topology on P. With each Boolean algebra B, we associate the partial order
structure whose universe is that of B minus the zero element and whose
order is the natural order on B.

If B, is a complete Boolean algebra, if P is the associated partial order
structure for B,, and if B, is the associated Boolean algebra for P, then it is
not difficult to show that B, is isomorphic to B, (See Theorem 1.40). This
establishes a kind of duality between partial order structures and complete
Boolean algebras; a duality that relates partial order structures, which have
broad and flexible applications, to the very beautiful theory of Boolean valued
models. It is this duality that provides a connecting link between the theory
of forcing and the theory of Boolean valued models.

Numerous background results are needed for our general theory. Many
of those results are well known and can be found in standard textbooks.
However, to assist the reader who may not know all that we require, we
devote §1 to a development of those properties of Boolean algebras, partial
order structures, and topologies that will be needed later.

Throughout this text, we will use the following variable conventions.
Lower case letters a, b, ¢, ... are used only as set variables. Capital letters
A, B, C, ... will be used both as set variables and as class variables; in any
given context, capital letters should be assumed to be set variables unless we
specifically state otherwise.
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1. Boolean Algebra

In preparation for Iater work, we begin with a review of the elementary
properties of Boolean algebras.

Definition 1.1. A structure {B, +, -, ~, 0, 1) is a Boolean algebra with

universe B iff 0 and 1 are two (distinct) elements of B; + and - are binary
operations on B; ~ is a unary operation on B; and Va, b, c € B.

l.a+b=b+a ab = ba Commutative Laws.
2.a+(b+c)=(a+b)+c albe)=(ab)e ' Associative Laws.
3.a+bc=(a+bfa+c) alb+ ¢) = ab+ ac Distributive Laws.
4. 0+a=a la=a Identity Laws.
5.a+ "a=1 a(a) =0 Complementation Laws.

Remark. There are alternative definitions of a Boolean algebra. The
reader might find it instructive to compare the definitions glven in the
standard texts. i

Examples. 1. If a # 0 then (Z(a)*, U, N, ~, 0, @) is a Boolean algebra.
If a = 1 we have a very special 2-element Boolean algebra that we denote by
2. Every 2-element Boolean algebra is isomorphic to 2.

2.1f a#0,b'c #a),0eb,ach, and if b is closed under ‘set union,
intersection, and relative complement then <b, U, N, 7, 0, @) is a Boolean
algebra. Such an algebra, i.e., one whose elements are sets and whose
operations are union, intersection, and relative complement, we will call a
natural Boolean algebra.

3. If for a first order logic whose language contains at least one predicate

symbol we define an equivalence relation between sentences by
p~¢ iff Flpdy]

then the collection of equivalence classes is the universe for a Boolean algebra

called the Lindenbaum-Tarski algebra. The operations are logical djsjunction,

conjunction, negation; V, A, —, with the distinguished elemenfs being truth

and falsehood, i.e., 1 is the equivalence class of theorems and 0 is the equiva- .
lence class of contradictions.

Exercises. Prove the followmg for a Boolean algebra {B, «7( o0, D

1. Va)la+ b=a]l—=>b=0. ‘ e
2. Va)lab =al—>b=1. Y LR O
* P(a) = {x|x<a). ° gt £ THe yir’



Notation: We will use the symbols B, B’, B, as variables on Boolean
algebras. |B| is the universe of the Boolean algebra B. When in a given con-
text the symbols 0 and 1 appear it will be understood that they are the
distinguished elements of whatever Boolean algebra is under discussion. If
there are two or more Boolean algebras in the same discussion we will write
0p, 13, 0y, 15. to differentiate between the distinguished elements of the
different spaces. If no confusion is likely the subscripts will be dropped. The
same convention will be used in denoting Boolean operations.

Theorem 1.2. If (B, +, -, 7,0, 1) is a Boolean algebra then Va, b€ B
l.a+a=a aa = a Idempotent Laws.

2.a+ab=a ala+ b) =a Absorption Laws.

Proof.

lLata=@+al=@+aa+ a)=a+aa)=a+0=a.
2.a+ab=al+ab=a(l +b)=a("b+b+b)=a("b+b)=al=a.

The proofs of the multiplicative properties are left to the reader.
. ‘Theorem 1.3. If (B, +, -, =, 0, 1> is a Boolean algebra then

1, 70=1,"1=0.
2. (VaeB)[1 +a=1 A 0a = 0].

Proof.

. 0=0+ 0=1.
2.1+4a=(Ca+a)+a="a+@+a)="a+a=1

The remaining proofs are left to the reader.
Theorem 1.4. If (B, +, :, =, 0, 1> is a Boolean algebra then Va, b€ B

l.a+b=1Aab=0-5b= "a.

2. "(Fa) =a.

3. “(@+ b) = ("a)("b), (ab) = “a + ~b.
4. ab=a<>a+ b= b.

Proof.

1. b =b1 = b(a + ~a) = ba + b(~a)
=0+ b("a) =a("a) + b("a)
=(@+ b)("a)=1(a) = "a. .
2. Since @ + a = 1 and ("a)a = 0, we have from 1, ~("a) = a.
.(a@a+b)+(CaChb=a+ b+ ~a)b+ b !
=a+ @G+ a)=1+b=1
(@ + B)("a)("b) = [a("a) + b("a)]("D)
= b(~a)("b) = 0.

Hence by 1, ~(a + b) = (Ta)("h).
4, Ifab=athena+b=ab+b=>b.1fa+ b=>bthenab=a(a + b) = a.
he proof of the other half of 3 we leave as an exercise for the reader.-



Definition 1.5. 1If (B, +, -, =, 0, 1) is a Boolean algebra then Ya, b € B

1. (@ — b) £ a("b).

2. (@a=b) = ~a+b.

3. (a<b) £ (a= b)b = a).

4. (a < b)& ab = a.

Remark. We will refer to < as the natural order on the Boolean algebra.

Theorem 1.6. If (B, +,-,-,0,15 is a Boolean algebra with natural
order < then Va, b, ce B

5 ad.sa
2.a<bAab<a—s>a=h.
.asbAab<ece—>a<ec.

Proof.

1. aa = a.

2.'a'="ab'='ba = b

3. Ifa=ab A b = bcthen a = ab = a(bc) = (ab)c = ac.

Theorem 1.7. If (B, +, -, =, 0,1) is a Boolean algebra with natural
order < then Ya,be B

l.a<b< "b< ~a

2.a<b<a—-b=0.

3.a<be(a=>b)=1.

Proof. 1. If a < b then a = ab. Therefore ~a = ~(ab) = ~a + ~b.
Then by Theorem 1.4.4("b)(~a) = ~b,i.e., b < ~a.Converselyif “b < ~athen
“(ta) < “(Cb) ie, a<h.

2. If a < b then a = ab. Therefore a(~b) = (ab)(~b) = 0. Conversely if
a("b) =0thena =al = a(b + “b) = ab + a("b) = abi.e.,a < b.

3.If a<b then a=ab and ~a = ~a+ ~b. Therefore (a=b) =
a+b=(a+ b)+b="a+1=1. Conversely if (@ = b) =1 then
a=al =a(Ca+ b)=abie.,a <b. . ]

Theorem 1.8. If {(B, +, -, ~,0,1) is a Boolean algebra with natural
order < then Va, b,c,de B

.0<b<1.
2. [a<b]A[c<d]—>[ac<bd]/\[a+c<b+d]

Proof. 1. 0 =0b A b = bl. ! T,
2. If a = ab and ¢ = cd then (ac)(bd) = (ab)(cd) = ac and ma R 3 A

(@+c)b+d)y=ab+ad+cb+cd=a+ad+ch+c=a+e
Exercises. Prove the following for a Boolean algebra <B, +, -, ~, 0, l)j: n

l.a< "b<ab=0. "
2.as(@+b)Ab<(a+b).



3. ab<aAab<b.
4 f[accab<scl>(@+b)<ec
5.[c<aAc<bl—c<ab

Definition 1.9. If (B, +, -, -, 0, 1> is a Boolean algebra with natui’al
order <, if A < B and b € B then

L.b=2 ab (Vac A)a < b] A (V' € B)[(Vae A)a < b']—+b < b).

acA

2.b=[]as (VacA)b < a] A (V' ¢ B)(Vac A’ < al-»b' < b),

acA

Definition 1.10. A Boolean algebra {B, +, -, =, 0, 1> is complete iff

(VA < B)(3b, b’ € B)[b =DaAb = Ha]-

agA acA

Example. If a # 0 then the Boolean algebra (5’(0) N, 71 0,.ad 1s
complete. Indeed if 4 = Z(a) and 4 # 0, then

Dl (A)Alb—[b=ﬂ(A).

beA

Theorem 1.11. If (B, +, -, =,0,1) is a Boolean:algebra and 4 < B

then
'Z = I—[ (Ca).

acAd acA
2. [Ja=3 (a
acd

Proof. 1. Since (Vbe A)[b < >,c4a] we have ~>,.,a < ~b and hence

2as]]Ca

acA

Also (Vb € A)[[1zea (Ta) < ~b). Therefore b < ~[laea (Ta), hence

Sas[]Ca

acA acd

1.6 ~

[[Ca =< ‘Z a.

acAd acd

2. Left to the reader.
Theorem 1.12, If ¢(B, +, -, ~,0,1) is a Boolean algebra, if b, c€ B,
A < B, and .

b=Za
acd

then

ch = Z ca.
acA



-

. Proof. If ac A then by Definition 1.9, @ < b and hence ca < ¢b. If
for each ae A, ca < d then since a = ("c + ¢)a= "ca+ ca< Tc+dit
follows from Definition 1.9 that b= c4+4d. Hence ch<d and again - from
Definition 1.9 3.4 ca = ¢b. j

Remark. Having now reviewed the basic properties of Boolean algebras
we turn to the problem of characterizing complete Boolean algebras. As a
first step in this direction we will show that the collection of regular open
sets of a topological space is the universe of a Boolean algebra that is almost

a natural algebra.
Definition 1.13. The structure <X, T is a topological space iff X # 0,

1. T P2(X) AOeT A XeT.
22.AcsT—-UJ(A)eT.
3. WN,N'eT)[INN N'eT].

T is a topology on X iff (X, T)-is a topological space. fac Xand Ne T
then N is a neighborhood of a iff ae N. If N is a neighborhood of a we
write N(a). "

Theorem 1.14. Z(X) is a topology on X.

Proof. Left to the reader

Definition 1.15. T is the discrete topology on X iff 7' = 2(X).
Definition 1.16. If T is a topology on X and _A < X then

L. A° 2 {xe A | GN)[N) < 4]
2. A~ 2 {xe X | (YNx)[N(x) N A # O]}.

Theorem 1.17. If Tis a topology on X and 4 = X then A°€ T.
Proof. If B={NeT|N < A4} then B < T. Furthermore
xeA’ > 3IN(x)<c 4

—_

< 3IN(x)e B
<+xelJ(B).'
Then 4° = |J (B)eT. dhis
eEl S <
Definition 1.18. T is a base for the topology Ton x 1ﬁ' N —
ol BL B G-

1. 'l
2. (VASs X)[A=A°—> (@B T4 =U®B)]

Theorem l 19 it X # 0,1 T 1s'a collectnon o}'ﬁgﬁfb of
propertles -

‘1. Vae X)3AeT)ac Al

ml‘&-’”l-ll'- b
2 (Van)(VAl,AzeT)[q@A*’ PR

Then T” is a base for a topol




Proof. IfT={B<c X|@Cc< T [B = (C)]} then 0= |J (0)eTand
from property 1, X = J(T") € T. This establishes property 1 of Definition 1.13.
To prove 2 of Definition 1.13 we wish to show that | (S) € T whenever
S < T. From the definition of T'it is clear that if S < T thenVBe S, 3C < T

B=J(©).

If
Cy={AeT'|A< B}
then '
B = U (Ca)
and
BeS BeS

| -U (Y c).
BeS
Since UBES Cg = T’, U (S) eT.
If B,, B,eTthen 3C,,C, = T’

B, = U (C) A B, = U (Cy).

B!nB,:(U Al)n(Q Az)

A €Cy AgeCa

{J (41N 4y)

A1€Cy
AgeCa

=) de ' (By 2).

A eCy
AgeCy
Az S AjNAg

Then B, N B, eT; hehce T is a topology on X. Clearly T is a base for 7.

Definition 1.20. If T is a topology on X and 4 < X then

1. Aisopeniff 4 = A°

2. Aisregular openiff 4 = A7°.

3. Aisclosed iff A = 4~.

4. A is clopen iff A is both open and closed.
5. Aisdensein Xiff A= = X.

Remark. From Theorem 1.17 we see that if T is a topology on X then T
is the collection of open sets in that topology. A base for a topology is simply
a collection of open sets from which all other open sets can be generated
by unions.

For the set of real numbers R the intervals (a, b)) = {xe R | a < x < b}
form a base for what is called the natural topology on R. In this topology
(0, 1), and indeed every interval (a, b), is not only open but regular open.
l[a,b] 2 {xe R|a < x < b} = (a,b)", Thus for example [1,2] is closed.

Therefore

8



Furthermore (0, 1) U (1, 2) is open but not regular open. The set of all
rationals is dense in R. In this topology there are exactly two clopen sets
0 and R.

Theorem 1.21. 1. In any topology on X both 0 and X are clopen.
2. In the discrete topology on X every set is clopen and the collection of
singleton sets is a base.

Proof. Left to the reader.

Remark. The next few theorems deal with properties that are true in
every topological space (X, T). In discussing properties that depend upon X
but are independent of the topology 7, it is conventional to suppress reference
to T and to speak simply of a topological space X. Hereafter we will use this
convention. :

Theorem 1.22. If A < X and if B € X then

1 A% € A'Sv4™.

2, A = AN AT = A7
3Ac B> A%< B N A= = BT,

4, (X —A) =X-A°ANX-A°=X-4".

Proof.

. xeA°—>3N(x)c 4

—x€A
x€A— (VN(X)[Nx)N A4 # 0]

—xeA".

2. xeA°>3IN(x) < A
— @ANX)[xe(N(x)N A% A (N(x) N A% eT

A (N(x) N A% < A°)

—3N(x)  A°
—x € A,

Since by 1, 4°° = A4° we conclude that 4%° = A°.

x€A™" = (YN(Xx)[N(x)N A4~ # 0]
= (YN(xX)E)[yeN(x) A ye A7]
= (YN)EYEN'(DIN'() N A4 # 0 A N(y)s Nx)
= (YN(x)[N(x) N A # 0]
—>XEA~.

Since by 1, A~ < A~ " it follows that A=~ = 4",
3. If A < B then

xeA°—=3IN(x) = 4
—3N(x) € B
_)xEBO : o) I IS J
xeA™ — (YNX)[Nx)n 4 # 0] .
»(VN(x))[N(x)ané 0] i e
— x:€ B,



4. xe(X — A)- <= (YNX))[N) N (X — A) # 0]
| < (YN(x))[N(x) & 4]
<>x¢ A°
<+xeX — A°
xe(X  A)° <> AN(x) < (X — A)
< (ANX)[INx)N A = 0]
> Xx¢A”
“~>xeX — A-.

Theorem 1.23, If A < X and if B < X then

1. A regular open implies 4 open.

2. A is open iff X — A is closed.

3. Ais closed iff X — A4 is open.

4. A < B and A4 dense in X implies B dense in X.

Proof.
I lIf Aui= AF L then ' 4Y = AT0 = A™° = A,
22A=A(X—A) =(X - 49
(X —A)=(X—- A).
3. Left to the reader.
4. A< B—~A- < B~. But 4 dense in X implies 4= = X. Hence

B = X.
Theorem 1.24. If C is a clopen set in the topological space X and
B~ — B° < Cthen B~ — Cis clopen.
Proof. If xe B~ — C then since B~ — B° < C
xeB° A x¢C.

Since C is closed X — C is open. Therefore B° N (X — C) is open. Then
xeB'N(X — C)impliesElN(x) cBN(X-C)c B —C.ThusB- -C
is open.

If (YN(x))[N(x) N (B‘ — C) # 0] then

(YNG)INE) N B~ #0 A N(x) N (X ~ C) # 0.

Since B~ isclosed x € B~; since Cis open X — Cis closed, hence xe X — C.
Therefore xe B~ — C and B~ — C'is closed.

Theorem 1.25. If Cis a clopen set in the topological space X then X — C
is clopen.

Theorem 1.26. The clopen sets of a topological space form a natural
Boolean algebra.

Proof. Left to the reader.

Theorem 1.27. If' 4 < Xand B < X then
I.(AUB)" = A" UB-,(AN B)° = A°N B°,
2.(ANnB)"< A" NnB, A°UB°<c (4V B)".
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