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Preface

The familiar concept described by the word “vibrations” suggests the rapid
alternating motion of a system about and in the neighbourhood of its equilibrium
position, under the action of random or deliberate disturbing forces. It falls within
the province of mechanics, the science which deals with the laws of equilibrium,
and of motion, and their applications to the theory of machines, to calculate these
vibrations and predict their effects.

While it is certainly true that the physical systems which can be the seat of
vibrations are many and varied, it appears that they can be studied by methods
which are largely indifferent to the nature of the underlying phenomena. It is to
the development of such methods that we devote this book which deals with free
or induced vibrations in discrete or continuous mechanical structures. The
mathematical analysis of ordinary or partial differential equations describing the
way in which the values of mechanical variables change over the course of time
allows us to develop various theories, linearised or non-linearised, and very often
of an asymptotic nature, which take account of conditions governing the stability
of the motion, the effects of resonance, and the mechanism of wave interactions
or vibratory modes in non-linear systems.

Illustrated by numerous examples chosen for their intrinsic interest, and
graduated in its presentation of parts involving difficult or delicate considerations,
this work, containing several chapters which have been taught to graduate students
at the Pierre and Marie Curie University in Paris, includes unpublished results
and throws a new light on several theories.

A glance at the table of contents will convince the reader of the variety of
subjects covered. They were selected primarily with an eye to forming a coherent
whole, but no doubt the choice also reflects some personal preferences which would
be hard to justify, but which we hope may give some grounds for believing that
the reader will derive as much pleasure from reading the book as its author had
in writing it.

Paris, October 1983 Maurice Roseau
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Chapter I. Forced Vibrations in Systems Having
One Degree or Two Degrees of Freedom

The study of linear vibrations of systems with one degree or two degrees of freedom
allows certain essential ideas, and in particular the concept of a response curve,
to be introduced by means of a few simple calculations. Similarly it allows us to
appreciate the influence of damping on the system under conditions in the
neighbourhood of resonance. This is of relevance to many widely-used mechanisms,
such as shock-absorbers, two-stage suspensions for vehicles or machinery where
the characteristics for optimum performance can be determined by using an analytic
approach.

Elastic Suspension with a Single Degree of Freedom

A mass m is in contact with a horizontal floor, z =0, through a spring of natural
length [,, of stiffness k. The length of the spring, in its equilibrium position, under
compression is /; and

(1.1) —mg —k(l, —1l,)=0.
x IF = R sin ot
€ 1 B
Figure 1.1

We now suppose the mass m to be acted upon by a vertical alternating force
of magnitude P, sin wt; denoting by z the height above ground (the length of the
spring) the equation of motion is:

(1.2) mz" + ¢z’ = —mg — k(z — l) + Pysinwt,

where cz’ is the viscous damping term. Writing x = z — [;, we obtain, taking (1.1)
into account:

(1.3) mx" + ¢x' + kx = Py sin wt.
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Applying the laws of mechanics to the system comprising the mass, spring and
damping device, assuming the masses of the two latter to be negligible, we can write:
(1.4) mx” = — R + P,sin wt,

where R measures the vertical force exerted by the system on the foundation, or
by (1.3):

(1.5) R =cx' + kx.

Torsional Oscillations

If torsional stresses, whose torque about the axis is T, sin wt, are exerted on a
disc, then in the case where the shaft is embedded, we have

Io" + c¢’ + ko = T, sin wt,

W3 Y —]

Figure 1.2

where [ is the moment of inertia of the disc, k, ¢ are rigidity and damping constants
of the shaft, and ¢ is the angle of rotation, while in the case of a free system with
two discs we have:

197 + c(9) — 93) + k(@) — 9;3) = Ty sinwt
1,03 + c(@2 — ¢') + k(@, — 9,) =0,
where I, I, are the moments of inertia of the discs with respect to their common
axis, and ¢,, ¢, their angle of rotation.

The relative motion is described by the co-ordinate y = ¢, — ¢,, which, by
(1.6) is the solution of:

L, LT, .
172 "k =20 L
I, Izt// +cy Vi I, 1251na)

(1.6)

In the absence of damping (c =0) the natural frequency of the oscillations
(To,=0)is
I,+1,

= [k .
¢ 1,1,
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Natural Oscillations

We consider the model described by (1.3), on the supposition that P, =0. In the
absence of damping (c = 0), the frequency of the natural oscillations is

k
m

If ¢ # 0, the solutions of (1.3) are given by:

2
c ¢ k
x=ae'' +be’”, sy,=—-—=% <4> ——, ¢>0.

C

Figure 1.3

2k
In the strongly-damped case where <2im> > o there is no oscillation; if the

o ¢\ _k : c .
damping is weak and | =— | <—, we write s= —-—*iq,
2m m 2m

k

2 t
(1.8) qg= [—— £ and x=exp s ‘(a, cos gt + a, sinqt).
m 2m 2m

It will be seen that the amplitudes of the oscillations have relative maxima at

. n . . ; .
intervals of T=—, which decrease like the terms of a geometric progression of
q

ratio exp< - ;—;) The frequency of vibration

2
(1.9) w=w, 1—(C> , Ce=2./mk

diminishes when the damping factor increases.

Forced Vibrations

We consider once more the model described by (1.3), with a forced excitation due
to the load P, sinwt; ignoring the transient case just discussed, we can write the
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periodic solution of (1.3) in the form:
(1.10) x = Asinwt + Bcos wt = x, sin (wt — @)
and calculate 4, B or x,, ¢ from

(k —mw*)4 — cw B =P,

cwA+ (k—mw?)B=0,

whence
e Po(k — mow?) o Pycw
(k —mw?)? + 2w?’ (k —mw?)? + c2w?
and
2\2 2 2\ —1/2

(L.11) "_°=<<1_“’_2> +(_02>)

xsf w!l C* w’l

2c w w?\ !
1.1 tgop=—"—(1——] ,
(1.12) o= o ( wﬂz)
P, . . : :

where x, = — is the static deformation which the system would undergo under

k
the effect of a stationary load P,,.

1
We deduce from (1.11) that at resonance w = w,, we have . =§—* =50 with
Xy 2c

¢ 1, . .
¢ =—. We shall say that 2 18 the ‘overtension’ of the system, which thus appears
C, €
as the ratio, at resonance, of the amplitude of the forced vibration to the static
deformation, when the corresponding ratio of the excitative forces is equal to 1.

The formula (1.11) which expresses for a given ¢ the amplitude %o of the
st

. . ; () :
forced vibration as a function of — defines the response curve; the maximum

2
amplitude is obtained when wg=;7 is such that (1—n2)2+(2—cn) is a

n *
2
.. . c i © _ .
minimum, ie. when 72 =1 —2(—) , if —<27Y2 and when # =0 otherwise.
C* *
The preceding discussion has thus led us to consider in turn:

1. the frequency of the natural or free oscillations:

2. that of the damped oscillations

2
o)
C*
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3. that for which the amplitude of the forced vibration is a maximum:

2
o=w, [1 —2<i>
C*

1 V/e,
Figure 1.4
Vibration Transmission Factor

We deduce from (1.5) and (1.10) that the amplitude of the periodic force R exerted

on the foundation is
RO = Xo+/ kZ + (C(l))z o

so that by (1.11) the transmittivity coefficient is:

2cw \? L2
1+< )
(1.13) o 1 dis
‘ Py w?\? [(2c w\?
-2 ) (=22
w? Cyp Wy
R
P
C=0
1 V!" W

Figure 1.5



