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Preface

Purpose

As science and engineering become more and more sophisticated, there is an
increasing need for practitioners to develop skills in using the computer. The
necessary skills go beyond the ability to program and include the ability to for-
mulate problems correctly and to solve problems requiring substantial amounts
of computation. Because there is now good numerical software available, it is no
longer efficient for persons needing to use the computer to write their own
numerical procedures. Rather, they should be knowledgeable about the com-
monly used numerical algorithms and why, where, and when these algorithms
succeed or fail. The underlying philosophy of this book is to try to create under-
standing about the algorithms and not to belabor the fine points of the construc-
tion of them. In a true sense it is a book on numerical methods rather than one
on numerical analysis. Nonetheless, it can be used in a mathematics department
to introduce mathematics majors to the computational mathematics field with
the notion that they may be motivated to study the subject later in a more rigorous
way. The target audiences are junior and senior students in the sciences and in
engineering who need to learn about numerical methods in a one-semester course
and professionals who need to upgrade their computer problem-solving skills.

Features

The official language chosen is PASCAL. It is widely taught and it is a well-struc-
tured and strongly typed language that encourages good programming. There
are PASCAL procedures in the book for all the major topics, and these are available

\
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on floppy disks for individual student use on personal computers. For those who
prefer FORTRAN we encourage the use of good program libraries, notably IMSL.
An IMSL subroutine is suggested for each major topic, and examples are shown
for the use of some of these subroutines.

Problem sets are given in each chapter. One of the features of the book is
the inclusion of project problems. These are real-life kinds of problems, many of
which are adapted from work that the author has performed in industry or as a
consultant. The author generally has required the solution of five to seven of
these as a major part of the one-semester course. The materials required to be
handed in included a program listing, printed (or graphical) output, and a brief
report. The instructor should pay careful attention to such matters as physical
units, the correctness of the results, the accuracy, style, spelling, and grammar
of the report, and the organization of the output. If the course in which the book
is to be used is a junior or senior engineering course, then it should have a design
emphasis with respect to the software. The student should be encouraged to do
a professional job on all of the project reports.

Prerequisites

Prerequisites for the course include mathematics through analytic geometry and
calculus, an introduction to ordinary differential equations, and an introduction
to linear algebra. The last two courses are combined into a single course in many
schools, which is a minimum satisfactory preparation. The standard physics and
chemistry courses, of course, are necessary background for more advanced work
in some field of science or engineering; lack of advanced background in mechan-
ics, electricity, or heat and thermodynamics may make it difficult to solve some
of the project problems without help from an instructor.
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1

Numbers and
Their Representations

Because numbers are the lifeblood of scientific and engineering computing, it is
necessary for us to understand how they are represented in the computer and
how they are treated in numerical computations. Central to that understanding
is the whole matter of number systems.

1.1 Number Bases

In the system of number representation with which we are familiar (called a
positional system), each digit’s value is determined by its position with respect to
the decimal point. For example, the number 675 means 6 times 100 plus 7 times
10 plus 5, so that the digits carry different values depending upon their position
within the number. Contrast this with the Roman numeral system, where a
symbol has a value more or less independent of its position. However, in the
case where a smaller numeral precedes a larger one, the smaller numeral has a
negative value:

IV=-1+5=4
Vi=5+1=6
It is extremely difficult to do arithmetic in the Roman numeral system, and one

of its few uses in recent times is in representing dates, such as on the cornerstones

of public buildings.



Chapter 1: Numbers and Their Representations

The Arabic system of numerals (symbols borrowed from the Sanskrit) with
positional representation leads to relatively easy rules of arithmetic. Algorithms
(prescriptions for carrying out some task that can be described in systematic
terms) for doing arithmetic in the decimal system have been known for many
centuries.

The idea of other number bases than 10, once thought mainly to be a curi-
osity, has become an important one in the last generation. John von Neumann
suggested during World War II that the binary (base 2) number system was the
natural one for computers, because it allowed the use of enormously simplified
electronic circuitry of high reliability.* Binary systems are now almost universally
used in computing, although as we shall see later, groups of three or four binary
digits can be grouped to form octal (base 8) or hexadecimal (base 16) digits for
convenience.

Every positional number system has the same features:

1. A base b, such as 2 (binary), 8 (octal), 10 (decimal), 16 (hexadecimal).

2. A set of b symbols, such as {0, 1}, {0, 1, 2, 3, 4,5,6,7}, {0, 1, 2, 3, 4, 5,
6,7,89,0r{0,1,...,9, A, B, C, D, E, F}. (Notice in the hexadecimal
system, A = 10, B = 11, C = 12, and so on.)

3. Positional representation:

Aply 1 * " M18p.A_14_2" * *
where the a’s are members of the set of symbols and where 4, carries as
its value ab".

Thus 225.3 = 2 x 10® + 2 x 10" + 5 x 10° + 3 x 10 '. Likewise, the binary
number

10111 =1x24+0x2+1x2%+1x21+1x272

which is 5.75 in decimal.
In order to distinguish 101.11 (binary) from 101.11 (decimal) we often write

101112 = 5.7510

or

(101 . 11)2 - (5. 75)10

1.1.1 Conversion Among Bases

The previous discussion gives a hint of how conversions between number bases
can be done. Basically, there are four kinds of conversions needed. A general
conversion of a number with an integer part and a fraction requires the use of

*There is evidence that John Atanasoff independently came to the same conclusion before Wo_rld
War II. Because he was not successful in creating a complete working computer that attracted wide
attention, his name did not become attached to the idea.



1.1 Number Bases

two of the four methods. The four methods depend upon whether the conversion
is made from the decimal system to some other system, or vice versa, and on
whether the number being converted is a fraction or an integer. These methods
will be illustrated using octal and decimal systems, but the principles are the
same for conversions among any two number systems.

Converting Octal Integers to Decimal Integers This method is easily under-
stood by means of an example.

2573 = 2 X 82 + 5 X8+ 7 =128 + 40 + 7 = 175y
The conversion is more efficiently done in nested form:

(2Xx8+5 x8+7=21x8+7=168 +7 =175y

Converting Octal Fractions to Decimal Fractions
(0.257)g = 2 x 871 + 5 x 872 + 7 x 872 = 0.341796875,0
This is also done more efficiently in nested form:

((3+5)/8 +2)/8 = (5.875/8 + 2)/8 = 2.734375/8 = 0.34179687510

Converting Decimal Integers to Octal Integers The algorithm is easy to under-
stand if we recognize that, for example,

37510 =do + a; -8 +a; 8 + - -
We now divide both sides by 8:
46+§=a—;+a1+u2-8+- =
The integer parts must equal the integer parts and the fractions must equal the
fractions, which allows us to conclude that ap = 7 and that
4610 =ay + a8 +az -8 + - -
Division by 8 again yields

6_ M
5+§:§+a2+u3'8+"'

Hence a; = 6 and
5=a, +a3-8+as 8+
Again, dividing by 8, we have

5 ar

O+=-=—+a3+ays -8+ -
) 3T a4



Chapter 1: Numbers and Their Representations

which allows us to write a, = 5 and
O0=a3 +a,-8+--:

This can be true if and only ifa; = a4 = - - - = 0. Thus
37519 = (a24180)s = 5675

In a shortcut form, this method is as follows:

46 5=a, (because 5 < 8)
8 )375 8 )46
32 40
55 6= a1
8
7 = ag

Converting Decimal Fractions to Octal Fractions The method here is analogous
to that of the last method, except that we use multiplication. For example, let us
convert decimal 0.35 to octal:

0.3510 =4a_1- 8_1 + a_o- 8—2 +a_3- 8-3 + -
Multiply by 8:
280 =a_4 +a_2-8‘1 +a_5-82 4.

Because the whole number part on the left equals the whole number a_,, we
can subtract a_; = 2 from both sides and multiply again:

640 =a_,+a_ 3-8 1 +a_ 482+ -

Now a_, = 6. Subtract this from both sides and continue:
320=ag_3+a_4-8 ' +a_5-8*+ -

Thus a_5 = 3. If we continue, we find thata_4 = 1,4_5 = 4, and so on, so that
0.35;0 = 0.2631463146 - + 5

This process does not terminate as in earlier processes. Here we have an example
of one of the problems we face in numerical computation: numbers that are
represented by terminating decimals in one number base system may not be
exactly represented in another base system because we have only finite-length
registers in the computer.

1.1.2 Decimal, Binary, Octal, and Hexadecimal

Because humans have four fingers and a thumb on each hand, we are stuck with
the decimal system, at least for now. Those of us who deal with computing
machines are also stuck with at least three other common bases: binary, octal,
and hexadecimal. That is not quite as bad as it seems because binary, octal, and



1.1 Number Bases

hexadecimal are in a sense all interchangeable. Suppose we write a large binary
number such as 10101110101101, = 11181, and group the digits by 3s (adding
1 zero to the leftmost group), starting from the right end:

010_101_110_101_101

Now write each triplet in decimal (which has the same set of digits as octal for
0 through 7):

2.5 6_5_5

This is simply the octal number 25655.
If we group the binary digits in 10101110101101 by fours (adding 2 zeros to
the leftmost group) and replace each group by hexadecimal digits, we have

0010_-1011__1010_1101 = 2BAD1,

where A = 10 = 1010,, B = 11 = 1011,, and D = 13 = 1101,.
If we write a binary integer in general as

n
2 2 =a,-2"+a, 12"+ - +a;-24a
k=0

we see that successive 3-bit (binary integer) groups (counted from the right-hand
end of a number) are of the form

3m+2 3m+1 3m
A3m 42 * 2 + A3 1 2 + Az 2

where m = 0 for the rightmost 3 bits, m = 1 for the 3 bits to the left of those,
and so on. We can factor 2°™ = 8" out of each of the terms to obtain

(a3m+2 2% + A3m+1 " 2+ a3m) - 8™

The quantity in parentheses is simply an octal digit, which is multiplied by the
appropriate power of 8. Thus

n Mn/37
2 ak2k = 2 b]8]
k=0 =0
where /371 means the least integer equal to or greater than n/3 and where the
b; are the octal digits obtained by grouping the binary digits by 3s.

A similar kind of proof can be done for the hexadecimal case using groups
of 4 bits instead of groups of 3 bits.

All computer systems provide input-output routines that convert internal
binary to decimal for printing or for cathode-ray tube (CRT) monitor display.
However, for many system functions it is easier to print or display octal or hex
digits rather than decimal. The conversions from binary to octal are simple. For
certain purposes the individual bits may be significant and may represent states
(on/off) of equipment or system functions. The use of byte-oriented machines (1
byte = 8 bits) has tended to increase the importance of hexadecimal over octal.
A byte holds exactly 2 hex digits, whereas octal digits will fit only those systems
having word lengths that are multiples of 3 bits.
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1.2 Number Representation

Computers are capable of representing numbers in several different ways. Inte-
gers are stored in one particular form, but numbers possessing fractional parts
are stored in a different form. Although the actual form of storage is binary, for
clarity we will use decimal in some of the discussions. The principles in each
case are the same.

1.2.1 Integer Representation

The previous material dealt mostly with positive numbers. However, we need
to be able to deal with negative-number representations in the computer as well.
In the case of integers, there are three different methods of representing negative
numbers: sign-magnitude, 1’s complement, and 2’s complement. The purpose
of using complemented (negative) numbers is that they can be added in a normal
adder, which eliminates the need for a subtractor. Complementation is simple to
do in the hardware, and the ability to complement is necessary for some of the
computer’s other logic operations. Sign-magnitude computers also use comple-
mentation but at the actual time of addition or subtraction.

In most machines the most-significant bit of the computer word is reserved
for the sign. Consequently, in the simplest case of sign-magnitude form, the
decimal number —11 is in 1-byte form:

10001011

t Sign bit

In 1’s complement, all the bits are simply complemented (i.e., each 1 bit is con-
verted to 0, and each 0 bit is converted to 1), or it can be considered that the
magnitude of the number is subtracted from a word filled with 1 bits:

11111111-1011=11110100

Note that the most-significant bt is a 1 to designate a negative number. Unused
bit positions at the left end are filled with 1s in what is sometimes called sign
extension. In the case of 2's complementation, the number is subtracted from ail
1s plus 1:

100000000 =11111111+1
—-1011

11110101 = -1l

In this case it is clear that the 2’s complement is 1 plus the 1's complement. This
is very little harder to implement in hardware than the 1's complement.

We will show a few examples of what happens in the hardware when com-
plemented numbers are used.



