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Preface

During the last 20 years, wavelet analysis has become a major research area
in mathematics, not only because of the beauty of the mathematical theory
of wavelet systems (sometimes also called affine systems), but also because of
its significant impact on applications, especially in signal and image process-
ing. After the extensive exploration of orthonormal bases of classical affine
systems that has occupied much of the history of wavelet theory, recently
both wavelet frames — redundant wavelet systems — and irreqular wavelet
systems wavelet systems with an arbitrary sequence of time-scale indices

have come into focus as a main area of research. Two main reasons for
this are to serve new applications which require robustness against noise and
erasures, and to derive a deeper understanding of the theory of classical affine
systems. However, a comprehensive theory to treat irregular wavelet frames
does not exist so far. The main difficulty consists of the highly sensitive inter-
play between geometric properties of the sequence of time-scale indices and
frame properties of the associated wavelet system.

In this research monograph, we introduce the new notion of affine density
for sequences of time-scale indices to wavelet analysis as a highly effective tool
for studying irregular wavelet frames. We present many results concerning the
structure of weighted irregular wavelet systems with finitely many generators,
adding considerably to our understanding of the relation between the geome-
try of the time-scale indices of these general wavelet systems and their frame
properties.

This book is the author’s Habilitationsschrift in mathematics at the
Justus-Liebig-Universitat GieBen. It is organized as follows. The introduc-
tion presents a detailed overview of the recent developments in the study of
irregular wavelet frames and of the already quite established theory of the
relation between Beurling density and the geometry of sequences of time-
frequency indices of Gabor systems. Furthermore, it explains our main results
in an informal way. Chapter 2 reviews the terminology and notations from
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frame theory as well as from wavelet and time-frequency analysis employed
in this book.

The notion of weighted affine density, which will turn out to be a most
effective tool for studying the geometry of sequences of time-scale indices as-
sociated with weighted irregular wavelet systems. will be introduced in Chap-
ter 3. We illustrate the new notion by giving several examples. We further
compare this notion of affine density with the affine density that was inde-
pendently and simultaneously introduced by Sun and Zhou [119] and point
out the advantages of our notion.

In Chapter 4, we prove that the notion of weighted affine density leads to
very elegant necessary conditions for the existence of general wavelet frames on
the sequence of time-scale indices. The usefulness of this notion is emphasized
by its utility for the study of a rather technical-appearing hypothesis known as
the local integrability condition (LIC) of a characterization result for weighted
wavelet Parseval frames by Herndndez, Labate, and Weiss [77]. In fact, we
show that under a mild regularity assumption on the analyzing wavelets, the
LIC is in fact solely a density condition.

Chapter 5 is devoted to the study of a quantitative relation between frame
bounds and affine density conditions, since the complexity of frame algorithms
is strongly related to the values of the frame bounds. A striking result here is
a fundamental relationship between the affine density of the sequence of time-
scale indices, the frame bounds, and the admissibility constant of a weighted
irregular wavelet frame with finitely many generators. Several implications of
this result are outlined, among which is the revelation of a reason for the non-
existence of a Nyquist phenomenon for wavelet systems and the uniformity
of sequences of time-scale indices associated with tight wavelet frames. In
addition, we also present the first result in which the existence of particular
wavelet frames is completely characterized by density conditions. The non-
existence of very general co-affine frames is then shown to follow as a corollary.

In Chapter 6, we show that most irregular wavelet frames (and even
wavelet Schauder bases) satisfy a so-called Homogeneous Approximation Prop-
erty (HAP). This property not only implies certain invariance properties under
time-scale shifts when approximating with wavelet frames, but is also shown
to have impact on density considerations. In addition to these main results,
our techniques introduce some very useful new tools for the study of wavelet
systems, e.g., certain Wiener amalgam spaces and related with these ob-
jects — a particular class of analyzing wavelets.

Chapter 7 is devoted to the study of shift-invariance, i.e., invariance under
integer translations, which is a desirable feature for many applications, since
this ensures that similar structures in a signal are more easily detectable. The
oversampling theorems from wavelet analysis show that most classical affine
systems can be turned into a shift-invariant wavelet system with comparable
frame properties. Most interestingly, the process also leaves density proper-
ties invariant, and the question concerning necessity of this fact for irregular
wavelet systems arises. In this chapter we study the analog of this problem in
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time-frequency analysis and give a complete answer for irregular Gabor sys-
tems. Along the way we introduce a new notion of weighted Beurling density
and derive extensions of results from H. Landau [97], and Balan, Casazza,
Heil, and Z. Landau [7]. The results obtained in this chapter are not only
interesting by itself, but can also be regarded as an important step towards
the study of similar questions in wavelet analysis.
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Introduction

1.1 Irregular Wavelet and Gabor Frames

Wawvelet analysis has attracted rapidly increasing attention since Daubechies’
groundbreaking book [41] in 1992 and is nowadays one of the major research
areas in applied mathematics. The analyzing systems commonly used in
wavelet analysis are the classical affine systems. Such a system consists of the
collection of time-scale shifts of a function v € L%(R), called the analyzing
wavelet, associated with two parameters a > 1 and b > 0 and is given by

{a™2¢(a™ z — bk)}j ke

The origins of time-frequency analysis trace back to Gabor’s article [59]
on information theory, which appeared in 1946. This theory has also since
become an important, independent branch of applied harmonic analysis. The
function systems most often employed in this theory are the reqular Gabor
systems, which comprise the collection of time-frequency shifts determined by
a function g € L?(R) and two parameters a,b > 0, specifically

{CQW“)"T!](I - a'k)}k,nEZ-

There exist extensions to the higher dimensional situation for both sys-
tems, but in this introduction we restrict our discussion to the one-dimensional
case for simplicity.

Both wavelet and Gabor systems play important roles in signal processing
and data compression, e.g., in developing JPEG 2000, in solving MRI prob-
lems, and for the FBI fingerprint database (see, for instance, the books by
Benedetto and Ferreira [8], Chui [25, 26], Feichtinger and Strohmer [56, 57],
and Mallat [100]). These two types of systems are also a source of many
intriguing mathematical problems and a useful tool in other areas of mathe-
matics, see, e.g., the applications of wavelets to the study of Navier-Stokes or
Euler equations (see, for instance, the books authored by Debnath [44] and
Hogan and Lakey [82]).
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Until some years ago the focus of research in wavelet analysis had been
mainly on the construction of orthonormal bases. But recently the the-
ory of frames, which generalize the notion of bases by allowing redun-
dancy yet still providing a reconstruction formula, has been growing rapidly,
since several new applications have been developed. Due to their robust-
ness not only against noise but also against losses, and due to their free-
dom in design, frames — especially tight frames — have proven themselves
an essential tool for a variety of applications such as, for example, nonlin-
ear sparse approximation, coarse quantization. data transmission with era-
sures, and wireless communications (see, for instance, Benedetto, Powell, and
Yilmaz [10]. Candes and Donoho [13], Goyal. Kovacevié, and Kelner [60].
and Strohmer and Heath [116]). Gabor frames have already been studied
for a longer time (cf. the books by Feichtinger and Strohmer [56. 57]). but
recently also wavelet frames have become a main area of research in the
wavelet community. (See, for example, the various papers authored by Chan.
Chui. Czaja, Daubechies, Grochenig, Han, He, Hernandez, Labate, Maggioni,
Riemenschneider, Ron, L. Shen, Z. Shen. Shi. Stockler., Q. Sun, and Weiss
(109, 67, 34, 27, 28, 29, 77, 32, 42, 19, 30, 31, 111].)

However, most results concerning wavelet and Gabor frames are restricted
to the special cases of classical affine systems and regular Gabor systems.
Recently, general irregular wavelet and Gabor systems, which can be built by
using arbitrary time-scale or time-frequency shifts, have attracted increas-
ing attention (see, for instance, the papers by Aldroubi, Balan, Cabrelli,
Casazza, Christensen, Deng, Favier, Feichtinger, Felipe, Heil, Kaiblinger,
Kutyniok, Lammers, Z. Landau, Molter, Ramanathan, Steger, W. Sun, and
Zhou [107, 22, 23, 18, 118, 15, 73, 92, 119, 120, 1, 55, 121, 7, 93, 94, 95, 117]).
An irreqular wavelet system is determined by an analyzing wavelet 1) € L?(R)
and a sequence of time-scale indices A C RT x R, regarded as a sequence in
the affine group A, and is defined by

W, A) = {(f%L'(rfl,r —b)}abyea-

Given a function g € L?*(R) and a sequence of time-frequency indices A C R?,
an rreqular Gabor system is given by

G(g.A) = {('2"""".(/(.1' — a)}(a.b)ea-

The necessity of studying these general systems occurs since in practice a
sequence of time-scale or time-frequency indices might be perturbed due to
the impact of noise or other disturbances or may be directly imposed by the
application at hand. Therefore results about the impact of properties of the
sequence of time-scale or time-frequency indices on frame properties of the
associated wavelet or Gabor system will turn out to be essentiell. Moreover,
the study of irregular systems is very interesting from the mathematical point
of view in deriving a deeper understanding of the theory of wavelet systems or
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Gabor systems and, in particular, of the special case of classical affine systems
or regular Gabor systems.

Later, it will become necessary to additionally equip the analyzing func-
tions contained in the system with weights and also to consider systems with
finitely many generators.

1.2 Density for Gabor Systems

Since time-scale and time-frequency indices associated with irregular wavelet
and Gabor systems are initially completely arbitrary, we are led naturally to
questions concerning the relation between their geometrical structure and the
frame properties of the associated system. In order to put our results into
perspective, let us review the density results that exist for the case of Gabor
frames and the Heisenberg group.

Classical results are mostly concerned with regular Gabor systems, i.e.,
with rectangular lattices of the form A = aZ x bZ, where a,b > 0. Baggett [4]
and Daubechies [40] proved that if G(g, aZ x bZ) is a complete subset of L?(IR)
then necessarily ab < 1. Since every frame is complete (but not conversely), it
follows as a corollary that if ab > 1, then G(g,aZ x bZ) cannot form a frame.
Baggett’s proof uses deep results from the theory of von Neumann algebras,
while Daubechies provided a constructive proof of this result by using signal-
theoretic methods (the Zak transform). However, her result is restricted to the
case that ab is rational. Daubechies also noted that a proof for general ab can
be inferred from results of Rieffel [108] on C*-algebras. Another proof of this
result based on von Neumann algebras was given by Daubechies, H. Landau,
and Z. Landau in [43], and a new proof appears in Bownik and Rzeszotnik [12].

H. Landau [98] extended the result on Gabor frames to much more general
sequences A in R?, deriving a necessary condition for G(g, A) to be a frame in
terms of the Beurling density of A, but requiring some restrictions on g and A.
For the rectangular lattice case, Janssen [86] gave an elegant direct proof that
if G(g,aZ x bZ) is a frame then ab < 1. This proof relies on the algebraic struc-
ture of the rectangular lattice aZ x bZ and the Wexler-Raz Theorem for Gabor
frames. Perhaps the most elegant development along these lines was due to
Ramanathan and Steger [107]. They proved that all Gabor frames G(g, A),
without restrictions on g € L?(IR), but only for separated sequences A C R2,
satisfy a certain Homogeneous Approzimation Property (HAP). This is a fun-
damental result that is of independent interest, and in particular they de-
duced necessary density conditions on the sequence of time-frequency indices
of irregular Gabor frames as a corollary. Ramanathan and Steger were also
able to recover the completeness result of Rieffel by using this technique as
a main tool. However, the proof by Ramanathan and Steger required A to
be uniformly separated. Christensen, Deng, and Heil removed this hypothesis
n [22]. Also, [22] extended the result to higher dimensions and to finitely
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many generators, and made several other contributions. Christensen, Deng,
and Heil derived the following general result on the density of Gabor systems
which we state for simplicity only in the one-dimensional, singly generated
case.

Theorem 1.1. Let g € L*(R) and A C R? be given. Then the Gabor system
G(g,A) has the following properties.

(i) If G(g. A) is a frame for L*(R), then 1 < D= (A) < D1 (A) < oo.
(ii) If G(g, A) is a Riesz basis for L*(R), then D~ (A) = D*(A) = 1.

Here D*(A) are the upper and lower Beurling densities of A, which mea-
sure in some sense the largest and smallest number of points of A that lie
on average in unit squares. The group structure employed for this notion
of density is the one coming from the Heisenberg group modulo its cen-
ter. The cutoff density 1 is called the Nyquist density. In the special case
A = aZ x bZ, we have D*(aZ x bZ) = ﬁ Grochenig and Razafinjatovo
adapted the Ramanathan/Steger argument to prove an analogous result for
windowed exponentials in [66].

Ramanathan and Steger conjectured in [107] that Theorem 1.1(i) should
be improvable to say that if D~(A) < 1 then G(g, A) is incomplete in L?(R).
However, Benedetto, Heil, and Walnut [9] showed that the Rieffel result does
not extend to non-lattices: there exist complete (but non-frame) Gabor sys-
tems with upper Beurling density €. The counterexample built fundamentally
on the work of H. Landau on the completeness of exponentials in L?(S) where
S is a finite union of intervals. Another counterexample, in which A is a sub-
set of a lattice, appears in Y. Wang [123]. Moreover, Olevskii and Ulanovskii
(103, 104] constructed a system consisting solely of translates which is com-
plete in L2(R), but even the upper density of the set of indices regarded as a
subset of R? equals zero.

Recently, Balan, Casazza, Heil, and Z. Landau showed that such neces-
sary density conditions, including the Nyquist density cutoff, apply to a much
broader class of abstract frames called localized frames [6]. Localized frames
were also independently introduced by Grochenig [64] for quite different pur-
poses.

Finally, we remark that density theorems for Gabor frames G(g, A) generated
by Gaussian functions g are related to density questions in the Bargmann-Fock
spaces, see, e.g., Seip [112]. We further mention that the notion of Beurling
density was also employed by Heil and Kutyniok [74] to derive conditions on
the existence of frames and Schauder bases of windowed exponentials, and an
adapted notion of density and a new notion of dimension were the main tools
to study wave packet frames and also Gabor pseudoframes for affine subspaces
in the papers by Czaja, Kutyniok, and Speegle [36, 37].

For more details and extended references we refer to the recent survey
paper on the history of the density theorem for Gabor systems by Heil [72].
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1.3 Geometry of Time-Scale Indices

It is natural to ask whether wavelet systems share similar properties, and the
immediate answer is that there is clearly no exact analogue of the Nyquist
density for wavelet systems. In particular, consider the case of the classical
affine systems W(¢, A) with dilation parameter a > 1 and translation para-
meter b > 0, i.e.,

A= {(a,bk)};rez.

It can be shown that for each a > 1 and b > 0 there exists a wavelet ) € L*(R)
such that W(i. A) is a frame or even an orthonormal basis for L?(R). In fact,
the wavelet set construction of Dai, Larson, and Speegle [39] shows that this
is true even in higher dimensions: wavelet orthonormal bases in the classical
affine form exist for any expansive dilation matrix. For additional demon-
strations of the impossibility of a Nyquist density. even given constraints on
the norm or on the admissibility condition of the wavelet, see the example of
Daubechies in [40, Thm. 2.10] and the more extensive analysis by Balan in [5].

However, the more general question remains: for what sequences A;. .. ... AL
C A and what weights w, : A, — R™ for ¢ = 1,..., L is it possible to construct
wavelet frames of the form

L L

U W(ihe, Ap, we) = U{u'/(a,. b)%(f%u"/((fl.r —b)}amen,

=1 =1

with finitely many generators ¢, ..., ¢ € L*(R)? Two important examples
of wavelet systems other than classical affine systems are the quasi-affine and
co-affine systems.

Quasi-affine systems, introduced by Ron and Shen [109], are obtained by
replacing the sequence A associated with a classical affine system by the new
sequence

A= {(”'I-b/\’)}K(LkGZ U {(‘1}-('7”’1\')}12()*@-

and using the weight function

w(a’, bk) =1, j<0,keZ,
w(a,a 7bk) =a 7, j>0,keZ.

In other words, “extra” elements are added to an affine system. and addition-
ally the norms of the extra elements are adjusted. Ron and Shen proved that
if a is an integer and b = 1 then an affine system is a frame if and only if the
quasi-affine system is a frame. The utility of the quasi-affine system is that it is
shift-invariant, i.e., integer translation-invariant, unlike the original classical
affine system. Shift-invariance, i.e., invariance under integer translations, is a
desirable feature for many applications, since it ensures that similar structures
in a signal are more easily detectable. Quasi-affine systems were also studied
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in the papers by Bownik [11], Chui, Shi, and Stéckler [35], Gressman, Labate,
Weiss, and Wilson [61], and Johnson [88].

Co-affine systems were studied recently by Gressman, Labate, Weiss, and
Wilson [61]. If we write an affine system as {D,;Tx¢}, xez, where D,; and
Ty, are the appropriate dilation and translation operators, then the associated
co-affine system is {T},D,;1}; kez. This amounts, in the terminology of this
book, to taking

A={(@, a7k} hez,

and w = 1. It was shown in [61] that such a system W(¢, A, w) can never
form a frame for L?(R), and, moreover, this impossibility remains even when
allowing weights of the form w(a’,a~7k) = w(a’). An extension of this result
to higher dimensions was derived by Johnson [90].

Considering the Gabor situation we come to the conclusion that a notion
of density for wavelet systems, despite the lack of a Nyquist density, should
be exactly the right method to explain, for instance, the difference between
affine/quasi-affine and co-affine systems, but even more to relate frame
properties of a wavelet system with properties of the associated sequence of
time-scale indices. It was already conjectured by Daubechies in [41, Sec. 4.1],
that the value ﬁ might play the role of a density for classical affine sys-
tems, since it is an ubiquitous constant in a variety of formulas in wavelet
analysis. For example, if W(¢, {(a’, bk)}; kez) is a tight frame for L*(R) and
f()oo l(€)[2/|€|dE = 1, then the frame bounds are exactly 7. In [113], Seip
introduced a notion of density for Bergman-type spaces on the unit disk,
and it is possible to derive some density results for wavelet frames W(v), A)
generated by certain wavelets ¢ from those results. Some preliminary results
relating density to wavelet frames also appeared in a paper by Olson and Seip
[105], but until now there has been no general theory of density properties
of wavelet frames; there did not even exist a notion of density for general
irregular wavelet systems.

To build such a theory is a fascinating challenge, since the situation for
wavelet systems is much more delicate than the one for Gabor systems due
to the non-commutativity of the affine group. Results in this direction should
lead to a much deeper understanding of the geometrical structure of the time-
scale indices associated with a wavelet frame, thereby also delivering tools to
construct irregular wavelet frames and to examine their stability.

Summarizing, this research monograph has the following aims.

> Derive a notion of weighted affine density for weighted sequences of time-
scale indices of weighted irregular wavelet frames with finitely many gener-
ators in such a way that classical affine systems possess a uniform density
equal to the ubiquitous constant ﬁ

> Study whether the non-existence of co-affine frames is related to density
properties.

> Derive necessary and sufficient density conditions for the existence of
weighted irregular wavelet frames with finitely many generators.
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> Relate the density of the weighted sequences of time-scale indices to the
frame bounds of weighted irregular wavelet frames with finitely many

generators.
> Reveal reasons why a Nyquist phenomenon does not exist for wavelet
systems.

> Study the HAP for wavelet systems and its relation (or lack thereof) to
density conditions.

> Study the affine density of a classical affine system and the weighted affine
density of its associated quasi-affine system and examine whether their
relation is enforced by the property that one system is a frame if and only
if the other system is a frame.

1.4 Overview of Main Results

In the following we outline the organization of this book and present some of
the highlights in an informal way.

In Chapter 2 we present some background and notation from frame theory
and wavelet and time-frequency analysis which will be employed throughout.
We further give a brief overview of Wiener amalgam spaces in the general set-
ting of locally compact groups, since we will consider different group settings
in this book. These spaces will serve as regularity conditions for analyzing
wavelets as well as for Gabor generators.

We proceed in Chapter 3 to introduce the new notion of upper and lower
weighted affine density for weighted irregular wavelet systems with finitely
many generators and to study several of its properties. We show that it satisfies
the property that classical affine systems possess a uniform affine density.
i.e., upper and lower density coincide, and this density is exactly equal to
the magical constant m Moreover, we compare this density with another
notion of density for wavelet systems simultaneously introduced by Sun and
Zhou [119]. We show that for their density a weighted form has to be used
to derive the same uniform density for the classical wavelet systems, thereby
emphasizing our notion as more naturally in this sense.

In Chapter 4, we derive necessary conditions on the upper and lower
weighted affine density for the existence of a weighted irregular wavelet frame
with finitely many generators. These results only rely on conditions concern-
ing finite upper and positive lower density, in this sense on qualitative density
conditions. More precisely, we prove that if such a wavelet system possesses
an upper frame bound, then necessarily the upper density has to be finite
(Theorem 4.1). This result confirms the intuitive view of the density as the
amount to which the time-scale indices are concentrated. We further show that
provided that the wavelet system possesses a lower frame bound, then, under
some hypotheses on the time-scale indices and with weights being equal to



