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FOREWORD

This IMA Volume in Mathematics and its Applications

TOPOLOGY AND GEOMETRY IN POLYMER SCIENCE

is based on the proceedings of a very successful one-week workshop with
the same title. This workshop was an integral part of the 1995-1996 IMA
program on “Mathematical Methods in Materials Science.” We would like
to thank Stuart G. Whittington, De Witt Sumners, and Timothy Lodge
for their excellent work as organizers of the meeting and for editing the
proceedings.

We also take this opportunity to thank the National Science Foun-
dation (NSF), the Army Research Office (ARO) and the Office of Naval
Research (ONR), whose financial support made the workshop possible.

Avner Friedman

Robert Gulliver



PREFACE

This book is the product of a workshop on Topology and Geometry of
Polymers, held at the IMA in June 1996. The workshop brought together
topologists, combinatorialists, theoretical physicists and polymer scientists,
who share an interest in characterizing and predicting the microscopic en-
tanglement properties of polymers, and their effect on macroscopic physical
properties. .

Linear polymer molecules in dilute solution are highly flexible and self-
entangled. In more concentrated solutions, or in the melt, there can be
important entanglement effects both within and between polymers, and
these entanglements can influence the rheological properties of the sys-
tem as well as the crystallization properties, and hence the properties of
the polymeric system in more ordered states. Although polymer scientists
have been aware of these problems for more than forty years, it is only
recently that the powerful methods of algebraic topology have been used
systematically to characterize and describe these entanglements. Starting
from the simplest possible system (a ring polymer in dilute solution) one
can ask how badly knotted the polymer will be, as a function of the degree
of polymerization, the stiffness, the solvent quality, etc. To some extent
these questions have been answered by a combination of rigorous mathe-
matical arguments (combining ideas from combinatorics and from algebraic
topology) and numerical methods such as Monte Carlo techniques. For in-
stance, the paper in this book by Orlandini et al addresses the question
of the relative probability of different knot types in a ring polymer. One
can also ask about the differential geometry of the polymer and the pa-
per by Bickis investigates this question for a random walk model. As the
concentration increases, linking between rings becomes possible and these
links will influence the static and dynamic properties of the solution. Sev-
eral problems associated with linking are treated in this book by Diao and
Janse van Rensburg and by Uberti et al.

As we pass from dilute solutions to melts the characterization of the
entanglements becomes more difficult. The paper by Edwards addresses
these problems. Having characterized the entanglement complexity one
then needs to know how it will affect rheological properties. For instance,
what is the contribution of entanglements to the elastic properties of a
rubbery polymer? How do the dynamics of polymers, in solution or in the
melt, depend on entanglement?

The conformations of polymers are strongly influenced by any applied
geometrical constraints. Polymers behave quite differently in pores or when
confined in a slab geometry and their properties in these environments in-
fluence their behaviour as, for instance, stabilizers of colloidal dispersions.
Approximate theories of colloidal stability have been available for many
years, but it is only recently that simple models of polymers in confined
geometries have been analysed rigorously. There can be interesting inter-
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viii PREFACE

actions between topological properties and these geometrical constraints.
E.g. how does the knot probability in a ring polymer change when the
polymer is confined to a pore or slab? These questions are treated in the
papers by Soteros and by Tesi et al.

Topological problems also occur in the modelling of polymeric mem-
branes. These are closely related to self-avoiding random surfaces, an area
in which rapid progress has recently been made, although many important
questions still remain open. Closely related are the properties of vesicles
where the topology of the surface can have an important influence on the
behaviour of the vesicle. The papers by Einstein and Stella, and by Beichl
and Sullivan, discuss numerical approaches to these problems, while Janse
van Rensburg presents some corresponding rigorous results.

An area where ideas from physics have had a direct influence on knot
theory is the topic of knot energies. A knot is a simple closed curve in R3
(which could be a smooth curve or a finite polygon). One associates an
energy functional with the curve so that each embedding has an associated
energy. The minimum energy over all embeddings with a fixed knot type
is a knot invariant. The book contains four articles on this subject. The
paper by Kauffman et al describes one such functional and the search for its
energy minima. Of course, there is tremendous flexibility about the choice
of the energy functional and the paper by Ernst et al considers desirable
properties of the knot energy and compares different choices for it. The
papers by Simon, and by Kusner and Sullivan discuss aspects of a closely
related issue, the thickness of knots. This is an area which is attracting
considerable interest at the present time, with recently observed correspon-
dences between the electrophoretic mobility of knotted DNA circles and the
energy of “ideal” knot representatives.

The book gives an account of recent progress in our understanding of
polymer geometry and topology, and the physical ramifications of polymer
entanglement. We trust that it will be of interest to specialists in this
area. We hope that it will also serve to introduce polymer scientists to
topological approaches, and topologists to interesting applications of their
subject in polymer science.

Stuart G. Whittington
De Witt Sumners

Timothy Lodge
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ENTANGLEMENTS OF POLYMERS
S.F. EDWARDS*

Abstract. The interaction of polymers must not allow them to pass through each
other. This poses a topological problem which strictly speaking is not solved. Never-
theless much progress can be made using the Gaussian invariant, and the way to do this
is reviewed below. It turns out to give a renormalisable quantum field theory, and is
effective in understanding experimental results.

1. The mathematics of polymers. Polymer molecules are totally
understood in their specification, but their long chain nature introduces
highly complex dynamics, for the chains not only have the dynamics of
connection but also cannot pass through one another. Much progress has
been made on dense systems, but the topological integrity of the molecules
is ignored in dilute solutions, both in self or mutual interactions for no
better reason than it is difficult to handle.

Suppose we study the configuration of a chain of N segments of length
{, freely hinged, and of no thickness with no interactions. This problem is
well known and of course completely soluble. For N large i.e. N2 >> N
the distribution of one end with the other end at the origin tends to

3 3 3R?
which is the solution of
(1.2) (2~ 19%)P(R, 5) = 8(R)8(s)
) 8s 6 T

were s = N1

To get P, this Fick equation is fine, but it cannot solve the problem
of a polymer threading its way through a hole in a plane barrier, for the
condition that at some s the polymer is at the hole, and at all other points of
the plane the probability of tending the polymer is zero (for it cannot cross
the plane except at the hole), and these two conditions are incompatible
when using (1.2).

A real polymer of freely hinged segments is difficult to handle mathe-
matically for its mathematical structure is of a continuous function of its
arc length R(s), which is not differentiable at s = ml, m integral, where
the tangent R’ changes direction abruptly. A model much studied is to
allow the locus R(s) to be differentiable, but have its second derivative R
to change abruptly.

In terms of Wiener integrals, the Fick equation model is to use a prob-

* Polymers and Colloids, Cavendish Laboratory, Cambridge CB3 OHE, UK.
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2 S.F. EDWARDS

ability for the whole chain of

wexp(~gr [ R (e)ds)

and for the ‘wom like chain

(.uexp(—zz%/2 /R"Qd.‘s)]:-‘[é(R’2 -1)

or more crudely

wexp(—n/R"zds—*//R'zds)

where k represents the energy of bending over k7" and ¥ fits the long range
size NI2. Such molecules do exist and are important e.g. DNA, but as a
model it obviously is a crude representation of say polystyrene.

These matters are dealt with in detail in textbooks(!:23) and I assume
the reader knows this or will study the books cited.

In order to give the reader an intuitive view of what worries polymer
theorists, I pose the problem which will be calculated in section.

Imagine a box full of long random flight loci which are all frozen except
one. Hold the ends of that fixed, but otherwise allow it to move in Brownian
motion. The surrounding loci will hold our free locus in what is roughly
a tube. What is the radius, a of this tube. It can only depend on c the
concentration of the other loci, and I, but is not determined by dimensional

analysis
a=a (é,l) = a(e, 1)

L total length of all the loci, V volume of the box:
a = 1(612)0
What is a?

2. Topology and polymers. For an unambiguous situation consider
twa perfect circular rings, Ri(s), R2(s). They are either joined, or free. The
criterion given by Gauss is that

(2.1) I=#dm x dRy - V|Ry — Ra|™?

is zero for free rings, non zero for non free rings. The sign of I depends
on the convention assigned to the direction of the tangent. This is already
a problem as the molecule does not have a sense for its tangent, and this
turns out to be tiresome in applications; but this paper will not get that
far.



ENTANGLEMENTS OF POLYMERS 3

When one considers more than two rings e.g. the three Borromean rings
one finds it easy to get a configuration such that 113 = I3 = I3; = 0, but
the rings are entangled. Also there is no analogue of the Gaussian integral
(2.1) for self knots e.g. the simplest trefoil knot. By projecting the locus of
the curves in space onto a surface, and labelling each intersection on that
surface according to which curve is nearest to the surface, one can construct
Alexander polynomials, and new Vaughan Jones polynomials have recently
appeared. These do not seem to be suitable for use in statistical physics
however, though there are papers using them in simulations. The power of
the gauss integral can be expressed this way:

Suppose we have a box of rings. The I;; = 0 for all pairs. Thus the
entropy of the system is

3 2
(22) S=kp log/exp (——57 i /R: ds,-) gé(laﬁ)]‘;[ DR;.

This is complete and explicit. One could feed the R;(s) into a computer
and evaluate. More to the point, one has an explicit formula to start from
and calculate. Of course this is a peculiar system and would permit higher
connections such as the Borromeans, but one can imagine a system which
really is represented by (2.2).

One can make rings, but very long polymers will have their topology
dominated by local effects. It seems reasonable, particularly if a system 1is
cross linked chemically thus freezing in its topology, that there is a good
problem to be studies via (2.2) i.e.

Fig (1) cannot turn into figure (2). The shaded regions represent the
rest of the system. This situation is covered by making I;2 a constant.

To do this requires two further steps. The first is to be able to evaluate
the integrals, the second is to recognize that the statement ‘make I a
constant’ implies what in statistical mechanics is called a quenched system
i.e. one must calculate the entropy for a given set of I;; then average
that entropy (the logarithm as in 2.2) over the initial and henceforward
permanent values of the I;;. This latter step is discussed in many papers
and a particular method, the replica method, has been invented to handle
it. It will take us too far away from topology to discuss this, so a simplified
version will be offered later.

3. The evaluation of Gaussian invariants. Fick’s equation (2.1)
is like the Schrodinger equation and albeit “non relativistic” the evalua-
tion of integrals of the Gauss type is like a field theory calculation. Such
calculations started in the thirties but ran into divergence problems but in
the forties it was realised that the divergence in some of the field theories
was not an insuperable barrier to calculations for experiments measured
the difference between the value of the field theoretic integrals when say
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ENTANGLEMENTS OF POLYMERS 5

an external field is present. A typical integral might be

(3.1) J(4) = /lw x‘fA

where experiment measures

(3.2) J(A) - J(0) /Im x‘fA - 1°° d?“'
(3.3) = —log(1+ A).

This process, called renormalisation, is now fifty years old and so hallowed
by time. Nevertheless, at a fundamental level one is faced by the fact that
as A becomes large the integral becomes large, and if our present theories
are inadequate at short distances and times, this inadequacy will show up
at large A, i.e. at large external fields.

In polymers everything must be finite; the question we are addressing is
whether one can discard finiteness guarantees and use Wiener type integrals
to simplify calculations.

The first point is that the Gaussian invariant is the manifestation of
a divergent but renormalisable field theory. The present author was able
to prove this long ago(*) by showing that the Gaussian integral could be
parametrised by a vector field A;(v) via a Lagrangian

(3.4) Z/des+p/A -R'ds + M(Ag x A_y) - kd®k

(Similar things have been done in high energy field theories recently by
Chern and by Simons.) Since this point will appear soon further detail will
not be given here; the argument below is self contained.

As a caution it should be remarked that it is possible to get wrong an-
swers by renormalisation, for example if one calculates the osmotic pressure
of a polymer solution the answer is

(3.5) we? + /log (1 + %) d3k

where w is the interaction and ¢ the concentration. This is renormised by
. . . 3 .
removing a self interaction term we { &£ to leave a finite term™)

(3.6) we? — b(we)?

If ¢ becomes small, the fluctuation ¢3/2 exceeds the mean ¢? and a negative
osmotic pressure results which is physically impossible. If all the correct
physical limitations to the theory are added, the theory becomes sensible.
Crudely speaking, one just cuts off k at {~! above and (NI)~! from below.
(In quantum field theories, relativistic invariance prohibits such cut offs.)
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4. Calculation of the tube(®7®), Firstly consider a crude argu-

ment. Suppose our polymers are swollen to a cylindrical shape of cross
section ma? and then completely fill space(®)

Then ma’l = V
(41) a = (cﬂ')_%_

But suppose that we argue (1) that calculations using Wiener measure can
only give answers depending on (L1)2. Then

(4.2) a = c*1%o+t
V—aLa12a+1
hence
204+1 = «
(4.3) a = ¢ 117!

(Experimentally (9)a is available and lies between 1 and 1/2). These two
results can be derived from the Gaussian integral where (4.1) results from
differentiable chains and (4.3) from strictly Wiener chains i.e. continuous
but not differentiable.

I will not go into the detail of the calculation here, but just outline it.
One assumes there is an ‘a’ and evaluates it by considering the model of
section (1) above i.e. one chain has fixed ends and moves amongst all the
others which are frozen. Then consider our special chain at two remote
times R;R» and crudely models [], 6(/1a — I24) Where I;, is the Gauss
integral between 1 and another, a, by

exp(— /(R1 — Ry)}a™41ds,

The entropy of the system is calculated, and in both cases of differentiable
and non differentiable chains divergers, but is renormalisable.
Differentiable chains

(4.4) S =La 2+ qeLloga+ So

Wiener chains
(4.5) S=1La"?+4pca! + 5,

where g, p are numerical factors and Sp the rest of the entropy which is
logarithmically divergent in (4.4) and a linear divergence in (4.5).

It is possible to extrapolate between these of course because the basic
problem is always convergent.(1%)
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5. Conclusion. The difficulty with calculations like that of section
4 is that not only is the calculation tricky, but it is based on very crude
topological arguments. However, it appears that the local nature of the
chain is more important than the adequacy of the topological invariants.

Finally, it is perhaps worth remarking that dynamics offers a complete
evasion of the topological problem but at the high price of needing solutions
in time.(1?) The equation of polymers moving in the presence of a fluid is

o d 8 36°R
a—O(Z[;/f—aR(Sa)JD(R(sa)—R(sa)) (BR(Sp)+ lasgﬁ> P=0

(5.1)

where D is the Oseen tensor(roughly r~1).
It is easy to show such chains cannot cross and so all topological in-
variants are the invariants of this equation. But I cant solve it.
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ENTROPIC EXPONENTS OF KNOTTED LATTICE
POLYGONS

ENZO ORLANDINI*, E.J. JANSE VAN RENSBURG'!, MARIA CARLA TESI,
AND S.G. WHITTINGTONS

Abstract. Ring polymers in three dimensions can be knotted and the dependence
of their critical behaviour on knot type is an open question. We study this problem for
self-avoiding polygons on the simple cubic lattice using a novel grand-canonical Monte
Carlo algorithm which is a combination of the BFACF algorithm and MMC sampling.
We present numerical evidence that the entropic exponent depends on the knot type of
the polygon. We conjecture that the exponent increases by unity for each additional
factor in the knot factorization of the polygon.

1. Introduction. Polymer molecules in solution are typically very
flexible objects which can be highly self-entangled, as well as being entan-
gled with other molecules. It is important to understand and to characterize
the extent of this entanglement complexity since it influences crystalliza-
tion behaviour [1] as well as rheological properties [2]. If a ring closure
reaction occurs the entanglement can be trapped as a knot in the resulting
ring polymer, and some information about the entanglement complexity
can be obtained from a study of the distribution of knots in the ring poly-
mer. In addition, the presence of knots in closed circular DNA can give
information about the mechanism of action of enzymes acting on the DNA
molecule [3,4,5].

In the last few years some progress has been made towards answering
some basic questions about knots, such as discovering the probability that
a sufficiently long polymer is knotted [6,7] and the distribution of random
knots [8]. However, the statistics of polymer rings with fixed knot type
are less well understood. Quantities such as the average size of knotted
polymer rings or their configurational entropy (i.e. the number of ways
in which such rings can be embedded in space) could in principle depend
on the knot type and such dependence can influence the mobility of long
polymer chains such as DNA [4]. The question of how the size of a ring
polymer depends on its knot type was first addressed by Janse van Rens-
burg and Whittington [9] by means of Monte Carlo methods. They showed
that, although the dimensions of polygons are sensitive to the knot type,
the critical exponent v and the leading amplitude are independent of it.
Subsequent studies confirmed the robustness of the critical exponent v with

* CEA-Saclay, Service de Physique Théorique, F-91191 Gif-sur-Yvette Cedex,
FRANCE.

t Department of Mathematics and Statistics, York University, Downsview, Ontario,
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