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Preface

This book contains the proceedings of the Fifth International biennial Woodfiber-Plastic
Composites Conference held in Madison, Wisconsin, May 26-28, 1999. Hosted by the Forest
Products Laboratory, this conference was sponsored by the USDA Forest Service, University
of Wisconsin, University of Toronto and Materials and Manufacturing Ontario, American Plas-
tics Council, the Composites Institute, American Chemical Society (Cellulose, Paper and Tex-
tile Division), the Society of Plastics Engineers, and the Forest Products Society.

The purpose of this conference was to bring together both technical and applications people
to discuss and disseminate data and information in the area of lignocellulosic fiber-thermo-
plastic composite materials. Fiber reinforced thermoplastic materials is a rapidly growing
field and these conferences provide a platform for information exchange on the nature, struc-
ture, and properties of these materials.

Interest in this area has grown since the first conference was held. The breadth of the inter-
est in the subject and its worldwide aspect is reflected in conference participation. The total
number of registrants for the 1999 conference was 325, with representation from 17 foreign
countries. The largest single constituency group was from the manufacturing sector.

The conference covered both fundamental and applied aspects of the fiber-plastic compos-
ite field. The fundamental sections covered topics such as fiber and composites, processing
and properties, and structural and performance. The application sections covered topics such
as worldwide perspectives, processing, and markets and applications. There were keynote
presentations on the fundamental principles of polymer composites processing and design;
functional fillers for plastics: outlook to the year 2005,;and the changing nature of window ma-
terials in North America. This proceedings volume is organized according to papers presented
in each of these three sections.

The use of agro-based resources as fillers and reinforcements in thermoplastics dates back
almost 40 years, and there are many companies now producing products using these compo-
nents. Wood flour (particulate) is the most used filler today but interest is growing in using fi-
bers with high aspect ratios as reinforcing fillers. Combining wood flour with thermoplastics
without the use of a compatibilizer is also the most used technology today but interest is also
growing in the use of compatibilzers with fibers to improve performance of the fiber-thermo-
plastic composites.

Future research needs identified at the conference included the development of a data base
on properties of thermoplastic composites using different levels and types of fillers, improved
performance of agro-fiber thermoplastic composites used in adverse environments (water



sorption and weathering), improved impact properties, equipment development for more effi-
cient mixing systems while reducing damage to the agro-based resource and faster through
put, and developing better compatibilization systems. There was also much discussion on the
development of accurate guidelines for mixing, extruding and injection-molding of agro-fiber

thermoplastic composites and for the development of standards that can be used by various in-
dustries.

It will be interesting to discuss new developments in research, equipment development, and

industrial applications at the Sixth International Woodfiber-Plastic Composites Conference
planned for 2001.

Roger Rowell
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Fundamental principles

of polymer composites:
processing and design

Tim A. Osswald

Abstract

This paper presents some of the basic princi-
ples that govern the behavior of polymer compos-
ites processing and product performance. The is-
sue of fiber orientation during processing is
addressed as well as the influence of the resulting
orientation distribution on the mechanical be-
havior of the final part. The mechanisms that con-
trol fiber damage or attrition during extrusion or
molding cycles is also covered. The mechanical
behavior of the finished product is discussed, in-
cluding rules of thumb and simple computation
schemes used to compute their anisotropic me-
chanical properties.

Anisotropy development during processing
The mechanical properties and dimensional
stability of a molded composite product are
strongly dependent upon the anisotropy of the
finished part. The anisotropy depends on the ori-
entation of the reinforcing fibers which can either
be unidirectional, random, or distributed. A fiber

Osswald:
Associate Professor/Director, Polymer Processing Res.
Group, Dept. of Mechanical Engineering, Univ. of Wis-
consin, Madison, Wisconsin

orientation distribution function within the final
part is influenced, in turn, by the design of the
mold cavity (e.g., type and position of the gate)
and by various processing conditions. The amount
and type of filler or reinforcing material also has a
great influence on the quality of the final part.

In typical injection-molded products fiber, ori-
entation can be divided into seven layers (Fig. 1)
(25). The seven layers may be described as follows:

e two thin outer layers with a biaxial orientation,
random in the plane of the disk;

 two thick layers next to the outer layers with a
main orientation in the flow direction;

e two thin randomly oriented transition layers
next to the center core; and

* one thick center layer with a main orientation
in the circumferential direction.

There are three mechanisms that lead to high
degrees of orientation in injection-molded parts:
fountain flow effect, radial flow, and holding pres-
sure-induced flow.

The fountain flow effect (13) is caused by the
nonslip condition on the mold walls, which forces
material from the center of the part to flow out-
ward to the mold surfaces as shown in Figure 2
(26). The melt that flows inside the cavity freezes
upon contact with the cooler mold walls. The melt

Osswald ~ 3



Figure 1. — Filler orientation in
seven layers of a centrally injected
disk.

Figure 2. ~ Flow and solidification
mechanisms through the thickness
during injection-molding.

Figure 3. ~ Deformation history of a fluid element and
streamlines for frame of reference that moves with the

flow front.

that subsequently enters the cavity flows between
the frozen layers, forcing the melt skin at the front
to stretch and unroll onto the cool wall where it
freezes instantly. The fibers and molecules that
move past the free flow front are oriented in the
flow direction and laid on the cooled mold surface,
which freezes them into place, though allowing

4 ~ Osswald
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some relaxation of the molecules after solidifica-
tion. The fountain flow effect has been extensively
studied in the past few year using computer simu-
lation (14). Figure 3 (15) presents the predicted
shape and position of a tracer relative to the flow
front, along with the streamlines for a non-New-
tonian, nonisothermal fluid model. The square
tracer mark is stretched as it flows past the free
flow front, is deposited against the mold wall,
pulled upward again, and eventually deformed
into a V-shaped geometry. Eventually, the move-
ment of the outer layer is stopped as it cools and
solidifies.

Radial flow is the second mechanism that often
leads to orientation perpendicular to the flow di-
rection in the central layer of an injection-molded
part. This mechanism is schematically repre-
sented in Figure 4. As the figure suggests, the ma-
terial that enters through the gate is transversely
stretched while it radially expands and flows
away from the gate. This flow is well represented
in today’s commonly used commercial injection-
mold-filling software.
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Finally, the flow induced by the holding pres-
sure as the part cools leads to additional orienta-
tion in the final part.

Another important polymer composite manu-
facturing process is compression-molding of
thermoplastic and thermoset parts (Fig. 5). Dur-
ing compression-molding of thermoset products,
a charge is placed in a heated mold cavity and
squeezed until the charge covers the entire mold
surface. For example, a sheet-molding compound
charge is composed of a polyester resin with
about 10 percent by volume calcium carbonate
filler and 20 to 50 percent by volume glass fiber
content. The fibers are usually 25 mm long and
the final part thickness is 1 to 5 mm. Hence, the
fiber orientation can be described with a planar
orientation distribution function.

To determine the relationship between defor-
mation and final orientation in compression-molded
parts, it is common to mold rectangular plates
with various degrees of extensional flow (Fig. 6).
These plates are molded with a small fraction of
their glass fibers impregnated with lead so that
they become visible in a radiograph. Figure 7
shows a computer-generated picture from a ra-
diograph, taken from a plate where the initial
charge coverage was 33 percent (10,12). Digitiz-
ing techniques were applied to the 2,000 fibers
visible in Figure 7, resulting in the histogram pre-
sented in Figure 8 that depicts the fiber orienta-
tion distribution in the plate. Such distribution
functions are very common in compression- or

— Deformed

polymer particle

Figure 4. ~ Deformation of the poly-
mer melt during injection-molding.

y-h

N o
= _./'E{h

Free flow front

Figure 5. ~ Velocity distribution during compression-
molding with slip between material and mold surface.

transfer-molded parts and lead to high degrees of
anisotropy throughout a part.

Furthermore, under certain circumstances, filler
orientation may lead to crack formation (Fig. 9)
(25). Here, the part was transfer-molded through
two gates which lead to a knitline and the filler
orientation shown in (Fig. 9). Knitlines are
cracklike regions where few or no fibers bridge
across, lowering the strength across that region to
that of the matrix material. A better way to mold
the part shown in Figure 9 would be to inject the
material through a ring-type gate which would
result in an orientation distribution mainly in the
circumferential direction.

In compression-molding, knitlines are common
when multiple charges are placed inside the mold
cavity or when charges with re-entrant corners
are used (Fig. 10) (2). However, a re-entrant cor-

Osswald ~ 5
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Figure 6. ~ Schematic of extensional flow during com-
pression-molding.
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Figure 7. ~ Computer plot of fibers in a radiograph of
a rectangular sheet-molding compound plate.
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Figure 8. ~ Measured fiber orientation distribution

“histogram in a plate with 33 percent initial mold cover-

age and extensional flow during mold filling.

Filler orientation

Figure 9. ~ Formation of knitlines in a fiber-filled
thermoset pulley.

ner does not always imply the formation of a
knitline. For example, when squeezing a very
thick charge, an equibiaxial deformation results
and knitline formation is avoided. On the other
hand, a very thin charge will have a friction-
dominated flow leading to knitline formation at
the beginning of flow. Knitlines may also form
when there are large differences in part thickness
and when the material flows around thin regions
(Fig. 11). Here, a crack forms as the material flows
past the thinner section of the body panel. It is in-
teresting to point out that usually the thin region
will eventually be removed to create space for
headlights, door handles, etc.

Folgar and Tucker (6,7) derived a model for the
orientation behavior of fibers in concentrated
suspensions. Folgar and Tucker’s model for the
case of planar flow is as follows:
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where:

Y = magnitude of the strain rate tensor

C1 = phenomenological coefficient that
models the interactions between the
fibers

Folgar and Tucker’s interaction coefficient (Cy)
varies between 0 and 1, for a fiber without interac
tion with its neighbors and for a closely packed
bed of fibers, respectively. For a fiber-reinforced
polyester resin mat with 20 to 50 percent volume
fiber content, Cyis usually between 0.03 and 0.06.
When Equation [1] is substituted into a fiber ori
entation continuity equation, the transient gow
erning equation for fiber orientation distribution
with fiber interaction built in becomes:
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Figure 10. ~ Knitline formation in
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h  tio of 2.

Direction of flow
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Figure 11. ~ Schematic of knitline formation as sheet-
molding compound is squeezed through a narrow gap
during compression-molding.

The Folgar-Tucker model can easily be solved
numerically. The numerical solution of fiber ori
entation will be discussed using fiber-reinforced
thermoset composites as an example.

Today, computer simulation is commonly used
to predict mold filling, fiber orientation, thermal
history, residual stresses, and warpage in com-
plex parts.

Osswald ~ 7



In injection-molding, researchers are making
progress on solving three-dimensional orienta-
tion for complex realistic applications (5,23). Cro-
chet et al. have solved for the nonisothermal,
non-Newtonian filling and fiber orientation in
nonplanar injection-molded parts. They used the
Hele-Shaw model (9) to simulate the mold filling
and Advani and Tucker’s tensor representation
for the fiber orientation distribution in the final
part. They divided the injection-molded part into
layers and included the fountain flow effect in the
heat transfer and fiber orientation calculations.
Figure 12 presents the fixed finite element mesh
used to represent a 1- by 40- by 100-mm plate and
the filling pattern during molding. Figure 13 pres-
ents the isotherms, at the instant of fill, in the
three layers of the plate that are shown in Figure
12. Figure 14 shows the fiber orientation distribu-
tion for the same layers.

Because planar flow governs the compression
process, the models discussed earlier work very
well when describing the orientation of the fibers
during processing and of the final part. The Fol-
gar-Tucker model in Equation [2]is usually solved
using the finite difference technique. The velocity
gradients in the equation are obtained from mold

[ [/ /

YA

)l

Figure 12. ~ Fixed finite element mesh used to repre-
sent a 1- by 40- by 100-mm plate and temporary mesh
adapted to represent the polymer melt at an arbitrary
time during filling.
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filling simulation. The initial condition is sup-
plied by fitting y; (t = 0) to the measured initial
orientation state. For sheet-molding compound
charges, the starting fiber orientation distribu-
tion is usually random, or y; = 1/x.

The model has proven to work well when com-
pared to experiments done with extensional flows
described earlier. Figure 15 compares the measured
fiber orientation distributions to the calculated
distributions using the Folgar-Tucker model for
cases with 67, 50, and 33 percent initial charge
mold coverage. To illustrate the effect of fiber ori-
entation on material properties of the final part,
Figure 16 shows how the fiber orientation pre-
sented in Figure 15 affects the stiffness of the
plates (4).

The Folgar-Tucker model has been implemented
into various commercials.-available, compression-
mold-filling simulation programs. The compres-
sion-molding process of a truck fender will be
used to illustrate the prediction of fiber orienta-
tion distribution in realistic polymer products.
The filling pattern must first be computed to com-
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Figure 13. ~ Isotherms in three layers at 0 (centerline),
0.65, and 0.99 mm, the instant of fill.



