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Preface

This book grew out of a common passion for a beautiful natural object that
we decided to call the “valuative tree”. Motivated by questions stemming from
complex dynamics and complex analysis, we realized that we needed to un-
derstand the link between valuations, which are purely algebraic objects, and
more geometric or analytic constructions such as blowups or Lelong numbers.
More precisely, we looked at the structure of a special set of valuations, and
we found that this space had a very rich and delicate topological structure. We
hope that the reader will share our enthusiasm while progressively exploring
this space into its finer details all along this book.

This monograph has benefited from the help of many people. The first
author wishes to warmly thank Bernard Teissier for his constant support
and help, and Patrick Popescu-Pampu, Mark Spivakovsky and Michel Vaquié
for fruitful discussions. The second author expresses his gratitude to Jean-
Frangois Lafont, Robert Lazarsfeld and Karen Smith. We both thank the
referees for a number of useful suggestions.

Our work was done at several places, including the Institut de Mathéma-
tiques in Paris, the Department of Mathematics of the University of Michigan
in Ann Arbor, RIMS in Kyoto and IMPA in Rio de Janeiro. We are grateful
to these institutions for having provided us an excellent and motivating atmo-
sphere for working on our project. During the writing period, the first author
was supported by the CNRS, whereas the second author was supported by
STINT and by NSF Grant No DMS-0200614.

June 2004



Structure of the Book

Before embarking to a journey into the valuative tree, we describe below the
structure of the volume. A plain arrow linking chapter A to chapter B indicates
that the understanding of B relies heavily on a previous lecture of A. A dashed
arrow indicates a looser link between both chapters.

1: Basics on valuations

-7 2: Algebraic structure ofa valuation
Alternative route 4: Puiseux ('xpun.\‘inns‘ :
to the o \‘/ 3: Tree structures on valuation space V
tree structure 6: The universal dual graph 4~ * *

7: Measures on V 5: Topologies on V

' '

8.2: The voute étoilée 8.1: Complete ideals
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2 Introduction

metric trees; these are metric spaces in which any two points are joined by a
unique path isometric to a real interval.?

The nonmetric tree structure on V arises as follows. For v, € V, we
declare v < p when v(¢) < p(¢) for all ¢ € R. Our normalization v(m) = 1
implies that the multiplicity valuation vy sending ¢ to its multiplicity m(¢)
at the origin is dominated by any other valuation. This natural order defines
a nonmetric tree structure on V. rooted at vy, (Theorem 3.14).

As for the other two tree structures, any irreducible (formal local) curve C'
defines a curve valuation ve € V: ve(¢) is the normalized intersection number
between the curves C' and {¢ = 0}. A curve valuation is a maximal element
under < and the segment [vy, | is isomorphic, as a totally ordered set, to
the interval [1,oc]. We construct an increasing function a : V — [1, o] that
restricts to a bijection of [vm. ] onto [1,| for any C'; as a consequence,
« defines a parameterization of V. The number a(v) is called the skeumess
of v.? It is defined by the formula a(v) = sup, v(¢)/m(o). ’

In addition to the partial ordering and skewness parameterization just
described, the valuative tree also carries an important multiplicity function.
The multiplicity of a valuation v is equal to the infimum of the multiplicity
of all curves whose associated curve valuations dominate v in the partial
ordering. Thus the multiplicity function is an increasing function on V with
values in N = NU{oc}. A second important parameterization of V, thinness,
can be defined in terms of skewness and multiplicity.? We shall refer loosely
to the combination of the partial ordering, the parameterizations by skewness
and thinness, and the multiplicity function as the tree structure on V.

There are four types of inhabitants of the valuative tree V. The interior
points, i.e. the points that are not maximal in the partial ordering, are valua-
tions that become monomial (i.e. determined by their values on a pair of local
coordinates) after a finite sequence of blowups. We call them quasimonomial.
They include all divisorial valuations but also all #rrational valuations such
as the monomial valuation defined by v(x) = 1. v(y) = V2. The other points
in V, i.e. the ends of the valuative tree, are curve valuations and infinitely
singular valuations, which can be characterized as the valuations with infinite
multiplicity.

There is in fact a fifth type of valuations. These valuations cannot be
defined as real-valued functions, but define functions on R with values in
R, x R; (endowed with the lexicographic order). In fact they do have a nat-
ural place in the valuative tree, as tree tangent vectors at points corresponding
to divisorial valuations (see Theorem B.1). Geometrically they are curve val-

2Metric trees are often called R-trees in the literature.

3The skewness is the inverse of the volume of a valuation as defined in [ELS] (see
Remark 3.33).

4The thinness is also very precisely related to the Jacobian ideal of the valuation

(see Remark 3.50).
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uations where the curve is defined by an exceptional divisor. We hence call
them exceptional curve valuations.

The valuative tree is a beautiful object which may be viewed in a number of
different ways. Each corresponds to a particular interpretation of a valuation,
and each gives a new insight into it. Some of them will hopefully lead to
generalizations in a broader context. Let us describe four such points of views.
See also the diagrams on page 7.

The first way consists of identifying valuations with balls of curves. For
any two irreducible curves €, Cy set d(C, Co) = m(Cq)m(Cy)/Cy - Cy where
m(C;) is the multiplicity of C; and C' - C';y is the intersection multiplicity of
C, and C5. It is a nontrivial fact that d defines an ultrametric on the set
C of all irreducible formal curves (c.f. [Gal). This fact allows us to associate
to (C,d) a tree 7c by declaring a point in 7¢ to be a closed ball in C. The
tree structure on 7 is given by reverse inclusion of balls (partial ordering),
inverse radii of balls (parameterization) and minimum multiplicity of curves in
a ball (multiplicity). Theorem 3.57 states that the tree 7¢ is isomorphic to the
valuative tree V with its ends removed (i.e. to the set V, of quasimonomial
valuations).

A second way is through Puiseux series. Just as irreducible curves can be
represented by Puiseux series, the elements in )V are represented by valuations
on the power series ring in one variable with Puiseux series coefficients. The
set V, of all such (normalized) valuations has a natural tree structure and
a suitably defined restriction map from 17,. to V recovers the tree structure
on V. In fact, V is naturally the orbit space of V, under the action by the
relevant, Galois group (Theorem 4.17). This approach can also be viewed in
the context of Berkovich spaces and Bruhat-Tits buildings. As a nonmetric
tree, V embeds as the closure of a disk in the Berkovich projective line over the
field of Laurent series in one variable. The metric on V,,, induced by thinness
then also arises from an identification of a subset of the Berkovich projective
line with the Bruhat-Tits building of PGLs (see Section 4.6).

The third way is more algebraic in nature. The earliest systematic study
of valuations in two dimensions was done in the fundamental work of Zariski
in [Zal], [Za2] who, among other things, identified the set Vi of (not nec-
essarily real-valued) valuations on R, vanishing on C* and positive on the
maximal ideal m = (x, y), with sequences of infinitely near points. The space
Vi carries a natural topology (the Zariski topology) and is known as the
Riemann-Zariski variety. It is a non-Hausdorff quasi-compact space. The ob-
struction for Vi being Hausdorff stems from the fact that divisorial valuations
do not define closed points. Namely, their associated valuation rings strictly
contain valuation rings associated to exceptional curve valuations. One can
then build a quotient space by identifying all valuations in the closure of a
single divisorial one. This produces a compact Hausdorff space. Theorem 5.24
states that this space is precisely V (endowed with the topology of pointwise
convergence).
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The last way uses Zariski's identification of valuations with sequences of
infinitely near points. We let 1, be the dual graph of a finite composition
of blowups 7. It is a simplicial tree whose set of vertices defines a poset I7.
When one sequence 7 contains another 7/, the poset It naturally contains
I'r,. These posets therefore form an injective system whose injective limit
(or, informally, union) I'* is a poset with a natural tree structure modeled
on the rational numbers. By filling in the irrational points and adding all
the ends to the tree we obtain a nonmetric tree I, the universal dual graph.
This nonmetric tree can in fact be equipped with a parameterization and
multiplicity function. These both derive from a combinatorial procedure that
to each element in I'* attaches a vector (a,b) € (N*)2, the Farey weight.”
A fundamental result (Theorem 6.22) asserts that the universal dual graph
equipped with the Farey parameterization is canonically isomorphic to the
valuative tree with the thinness parameterization, and that this isomorphism

preserves multiplicity:.

As we mentioned above, singularities can be understood through functions
on the valuative tree. It is a remarkable fact that the information carried by
these functions can also be described in terms of complexr measures on V. Let
us be more precise. In the case of an ideal I C R, the function on V is given
by gr(v) := v(I), and the measure p; is a positive atomic measure supported
on the Rees valuations of I. This decomposition into atoms of p; corresponds
exactly to the Zariski decomposition of I into simple complete ideals.

In [FJ1], we shall show that a plurisubharmonic function u also determines
a function g, on V. The corresponding measure p,,, which is still positive but
not necessarily atomic, captures essential information on the singularity of u.
In particular, we shall show in [FJ2] that p, determines the multiplier ideals
of all multiples of wu.

The identifications g; < p; and g, < p, are particular instances of a
general correspondence between measures on V and certain functions on V.
In fact. this correspondence, being purely tree-theoretic in nature, is even
more general, and extends the equivalence between positive measures and
suitably normalized concave functions on the real line. By analogy, we thus
write p; = Agr, pu = Ag, and speak about the Laplace operator A on the
valuative tree.

There is a second instance where complex measures on V naturally appear,
namely when we study the sheaf cohomology of the wvoute étoilée X. In our
setting, X can be viewed as the total space of the set of all blowups above
the origin. Elements of H'z(l‘,C) naturally define functions on Vg, whose
Laplacians are atomic measures supported on divisorial valuations. The cup
product on cohomology has a natural interpretation as an inner product on
measures. This inner product is a bilinear extension of an inner product on
the valuative tree itself, and ultimately derives from intersections of curves.

“We follow the terminology used in [HP].
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We have tried to write this monograph with an eye towards applications,
such as the study of singularities of plurisubharmonic functions and dynam-
ics of fixed point germs. Our hope is that people who are new to valuation
theory will be able to follow the exposition, which we have tried to make
self-contained and elementary.

Experts on valuation theory will undoubtedly notice that we reproduce
many known results and that we do not work in the most general setting pos-
sible. Indeed, the assumption that R be the ring of formal power series in two
complex variables is unnecessarily restrictive. While we refer to Appendix E
for a precise discussion, we mention here that our analysis goes through in
two important cases: the ring of holomorphic germs at the origin in C?, and
the local ring at a smooth (closed) point of an algebraic surface over an al-
gebraically closed field. We decided to work in the concrete setting of formal
power series; readers with a good background in algebra may easily adapt the
arguments to more general situations. .

It would certainly be interesting to investigate generalizations to the case
when R is the local ring at a normal surface singularity, or any local ring of
dimension at least three. However, not only would this require the introduction
of a substantial amount of new material, but the corresponding valuation space
would no longer be a tree in general. Thus we shall not consider these more
general situations here.

We remark that a fair amount of the structure of the valuative tree is
implicitly contained in the analysis by Spivakovsky [Sp]. In particular, his de-
scription of the dual graph of a valuation is closely related to the construction
of the valuative tree as the universal dual graph. However, our approach is
quite different from his; in particular we do not use continued fractions. A
tree structure was described in a context similar to ours in [AA], but without
any explicit reference to valuations.

The main applications of the tree structure on the valuative tree to anal-
ysis and dynamics will be explored in forthcoming papers: see [FJ1], [FJ2],
and [FJ3].

We end this introduction by indicating the organization of the monograph,
which is divided into eight chapters and an appendix.

In the first chapter we give basic definitions, examples and results on
valuations. In particular we describe the relationship between valuations and
sequences of infinitely near points (in dimension two).

Chapter 2 is technical in nature. We encode valuations by finite or count-
able pieces of data that we call sequences of key polynomials, or SKP’s. This
encoding is an adaptation of a method by MacLane [Ma], the possibility of
which was indicated to us by B. Teissier. An SKP (or at least a subsequence
of it) corresponds to generating polynomials and approximate roots in the
language of Spivakovsky [Sp] and Abhyankar-Moh [AM], respectively. We are
thus able to classify valuations on R. This classification is well-known to spe-
cialists (see [ZS2, Sp] for instance) but we feel that our concrete approach is
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of independent interest. The representation of valuations by SKP’s is the key
to the tree structure on the valuative tree.

The third chapter concerns trees. Our main goal is to visualize the encoding
by SKP’s in an elegant and coordinate free way. We first discuss different
definitions of trees and the relations between them. Using SKP’s we then
show that valuation space V does carry an intricate tree structure that we
later in the chapter analyze in detail.

As an alternative to SKP’s, Chapter 4 contains an approach to the tree
structure on V through Puiseux series. The results can be interpreted in the
language of Berkovich. Specifically we indicate how the valuative tree embeds
inside the Berkovich projective line and Bruhat-Tits building of PGL, over
the local field of Laurent series in one variable. In fact, most of these results
are at least implicitly contained in [Be] but we felt it was worthwhile to write
down the details.

In Chapter 5 we analyze and compare different topologies on the valuative
tree. The definition of a valuation as a function on R, as well as the tree
structure on V, gives rise to three types of topologies: the weak, the strong
and the thin topology. In addition, we have two topologies on Vi : the Zariski
topology and the Hausdorff-Zariski (or HZ) topology. As mentioned above, the
former gives rise to the weak topology on V through the quotient construction.
The HZ topology is in fact equivalent to the weak tree topology induced by a
natural discrete tree structure on V.

In Chapter 6 we build the universal dual graph described above, and show
how to identify it with the valuative tree. The fact that valuations can be
simultaneously viewed algebraically as functions on R and geometrically in
terms of blowups is extremely powerful and we spend a fair amount of time
detailing some of the connections and implications. In particular, we show
that the valuative tree has a natural self-similar, or fractal, structure, see
Figure 6.12.

Chapter 7 is concerned with the relationship between measures on V and
certain classes of functions on V. The analysis is purely tree-theoretic and
gives a connection between (complex) measures on a parameterized tree and
functions on the (interior of the) tree satisfying certain regularity properties.
Apart from being of independent interest, this analysis is fundamental to
many applications.

In Chapter 8, we describe two instances where these measures appear nat-
urally. First we reinterpret in our context Zariski's theory of simple complete
ideals as explained in [ZS2]. This gives a new point of view on the decom-
position of any integrally closed ideal as a product of simple ideals. We then
construct Hironaka’s “votte étoilée” X as the projective limit of the total
spaces of all sequences of blowups above the origin. We use measures on V to
understand the structure of the sheaf cohomology group H?(X.C).

Finally we conclude this monograph by an appendix containing a few
results and discussions that did not find a natural home elsewhere in the
monograph. Specifically, we discuss infinitely singular valuations; analyze the



