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REVISER’S PREFACE TO SECOND EDITION

INMAN’S NAUTICAL TABLEsS, first published in 1821, were in the year 1910 thoroughly
revised and brought up to modern requirements by the Rev. W. Hall, Chaplain and
Naval Instructor, R.N., in whose premature death upon active service a short time
since the Naval Service has suffered a severe loss. So completely was this revision
carried out that no material changes seem now to be either necessary or desirable,
and the principal alteration in the present edition consists in a slight re-grouping
of the tables, so that tables similar to one another in character may be as far as
possible placed in the same part of the book.

~ The additions to the tables consist chiefly of two, both introduced in accordance
with suggestions in notes left by Mr Hall: —

(@) A table giving the principal corrections of the altitude of the Moon, similar
to the tables given in the 1910 edition for Sun and Star. The importance of a lunar
altitude taken in the daytime, which, when combined with a Sun altitude, affords
an opportunity for a complete “ fix "’ by simultaneous observations, is now very
generally recognised, and it is proper, therefore, that the correction of the Moon’s
altitude, as well as that of the Sun, should be effected in the most short and simple
manner which circumstances permit.

(b) Navigating officers are continually called upon to construct small sections
of a Mercator Chart, involving the calculation of the actual length in inches of each
degree of latitude involved.

The table giving the actual length of the several degrees is intended to save
unnecessary labour of computation.

The tables of approximate values of elements of heavenly bodies at given
epochis, which require revision from time to time, have been carefully corrected for
the latest dates available.

In the ' Explanation of the Tables ” particular attention has been directed to
principles of construction upon which the tables are based. This is especially the
case wiih reference to tables which, like those relating to the Ex-Meridian observation,
are peculiar to the Inman collection. The process employed in the tables mentioned
is an original one, deduced by the late Mr Hall from the standard formula employed
in the Royal Navy, and is believed to offer one of the simplest and most accurate
methods of dealing with this important problem in existence. In accordance with
suggestions from highly competent cuthorities as to the practical utility of these
tables, their limits have in the present edition been largely extended.

The “ Note on Lunars.” Within the last few years a simple but excellent method
of clearing the distance has been introduced into the Abridged Nautical Aimanac.
In the Note upon the subject included in the present volume advantage is taken of
the fact that the clearing of the lunar distance, and the reduction of the altitude of
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viii REVISER'S PREFACE TO SECOND EDITION
the pole star to latitude of place, are in substance examples of one and the same
problem. While, therefore, the general features of the process in the Note are similar
to those of the Almanac method, the adaptation of Table II., given in the 4lmanac
for the pole star, to the requirements of the allied problem of clearing the lunar
distance, materially shortens and simplifies the necessary calculations.

Before bringing these remarks to a close, the Reviser would like to express his
sense of obligation to Chief Naval Instructor S. F. Card, of the Royal Naval

College, Greenwich, for valuable suggestions in connection with the extension and
arrangement of certain of the Tables.

H. B. GOODWIN.
1918.



EXPLANATION OF THE TABLES

Page 1. Divisions of Compass Card.—The circumference of the compass card is
divided into 360°, beginning from north, the angle increasing clockwise. The card
is also divided into thirty-two points, each containing 11}°. The names by which
these points, and their subdivisions, are known are shown in the table, together
with the equivalent values in degrees, correct to }'.

Pages 2 and 3. Time Courses, &c.—These supply at sight the distance run in
any time at a given speed, or, conversely, the time in which a given distance will be
covered at a partlcular speed.

Pages 4 and 5. Position by Two Bearings of an Object and the Run between
Observations.——The table furnishes the results of the solution of a number of plane
triangles, the object being to find the distance of a point from the ship by means of
a pair of observations of the “ Angle on the Bow.” The following example will serve
to illustrate the use of the table:—

Ex.—A light was sighted 29° on the port bow, and after the ship had run for 12 minutes at
12 knots it bore 62° on the port bow.
The angle from bow at ﬁrst bea.rmg (top of page) is 29
The change of bearing (left-hand index column) is 33°.
The factor from table (p. 4) =
The run is $(12) =2-4 miles.
Therefore the distance at second bearing is (2-4) (-89) =2-1 miles.

Note.—This table is correct only if there is:no cross-current or leeway.

Pages 6-11. The corrections in altitude for the various heavenly bodies are here
given in a single term. In the case of the Moon (pages 10, 11) the table has been
specially computed far the present edition.

Ex. —Jv.ne 7th. Obs. Alt. Sun’s L.L. 33° 50", nght of eye 36 feet.
The correction falls in the middle of a block l ls 8|' and may be taken as 8:8’. For June 7th

the small table at foot gives the correction -0’2, so that 8’6 has to be added to the
altitude observed.

ix



X EXPLANATION OF THE TABLES

Page 14. Dip and Distance of the Sea Horizon.—The theoretical Angle of Dip,
in minutes, for a height of % feet is

Dip () =1-063 V',

and, in theory, the distance of the sea-horizon, in nautical miles, is the same.

The effect of atmospheric refraction is to reduce the dip, and to increase the dis-
tance, by about 8 per cent. of the theoretical value.

The formule employed in these tables are:

Dip=-98 Vh. Distance =1-15 V.

The distance of the sea-horizon is the distance at which an object at sea-level
first becomes visible, and this table helps to find approximately the distance at which
a light is sighted.

Thus, a light 120 feet above sea-level could just be seen at a distance of 12:6 miles by an eye
on the sea surface. But at a height of 50 feet from water-line the distance of visibility would
be increased by the observer’s range of vision, namely, 8.1 miles, so that the light would be 20:7
miles distant.

Mean Refraction.—The effect of refraction is to increase the altitude of a heavenly
body, and the table gives the amount of arc to be subtracted from the apparent
altitude in order to allow for this effect. The table has been calculated for average
atmospheric conditions of pressure and temperature, as represented by ro15 milli-
bars, =29-94 inches, for height of barometer, and by 50° Fahrenheit for height of
thermometer.

It may be well to draw attention bere to the fact that at low altitudes the amount
of refraction is always uncertain.

The question of Abnormal Refraction has been the subject of Admiralty in-
vestigation and in the result the table hitherto appearing on this page is deleted.
This investigation has shown that the z!lowance made for refraction in the standard
dip tables is the correct average value, that variations on either side are equally
likely, and that the chance that the error exceeds 2’ is considered to be about one
in two hundred.

Page 17. Pole Star Azimuths.—By the use of the True Azimuth here tabulated
for the Argument ““Sidereal Time” the pole star beconies available for determination
of compass error whenever visible at a suitable altitude—that is, whenever the
observer’s latitude is not too great.
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. Page18. Correction of Moon’s Meridian Passage.—The Moon crosses the meridian
about 48 minutes later on an average day by day. The actual amount of retardation
for a particular day is found by inspection of the Times of Transit in the Almanac.
The difference of Transit on successive days is equivalent to a difference of 360° of
longitude. If the retardation for the day is 60 minutes, and the longitude go° W.,

the Moon will transit the meridian of the place later than at Greenwich by %)6 x 60

=15minutes. Had the longitude been go® E.,the passage would have been 1 5 minutes
earlier in local time than at Greenwich. The table gives the quantity to be added to
the Almanac time for West, but to be subtracted for East longitude. The Shin Time
of transit being thus found, the Greenwich Date is found by applying the longitude in
time.

Ex—Find the Greenwich Date of the Moon’s Meridian Passage on 18th April 1918 in longitude
84° W., having given from the A!manac—

h. m.
Meridian Passage 18th April- 6 4t
»” " igth ,, 7 26

The difference in time of transit for 24 hours is 45@. The correction from table for change
in time of passage 45m., longitude 84° W., is 4 10®-5. Then—

h., m.
Transit at Greenwich 6 41
Correction - 10°5 +

Longitude in Time 5 36 +
Greenwich Date 12 . 27'5

Page 19. Augmentation of the Moon’s Horizontal Semidiameter.—-The Moon
being distant from the earth about sixty earth-radii, is nearer when in the zenith than
in the horizon by the distance of the earth’s radius. It follows that the semidiameter
in the zenith subtends a greater angle than when in the horizon, and for any given
altitude has a value between these extreme limits. The quantity tabulated in the
Almanac is the horizontal value, and the correction necessary is taken from the table.

Page 19. Reduetion of Semidiamzter on account of Refraction.—This small
correction results from the fact that the upper and lower limbs are unequally affected
by refraction. The correction is only appreciable at low altitudes, and in practice
need not be taken into account in ordinary observations at sea.

Page 19. Reduetion of Horizontal Parallax, and Latitude of Place.—Parallax of
the Moon is defined as the angle subtended at the Moon by the observer’s earth-
radius. The figure of the earth is not exactly spherical, and the parallax given in the
Almanac is calculated for the earth’s equatorial radius. The correction ir the table
reduces the value to that proper for the latitude of the observer.

Page19. Reduction of Latitude.—On account of the spheroidai figure of the earth,
the observer’s earth-radius is not in general strictly perpendicular to his horizon.
Latitude calculated from observations taken from the “ geographical "’ horizon must
therefore be reduced by the amount taken from the table to give the ““ geocentric ”
latitude. See also the table, p. 489.

Page 20. Moon’s Parallax-in-Altitude.—If from the Moon the angle subtended

the earth’s semi-diameter could be measured, it would be the Moon’s Parallax,
previously defined as the angle subtended at the Moon’s centre by the observer’s
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earth-radius. When the Moon is on the horizon the earth-radius is at right angles
to the line of sight, and the angle is a maximum (called Horizontal Parallax). When
the Moon is in the zenith, the earth-radius lies along the line of sight, and the

angle vanishes. At intermediate altitudes the angle (called Parallax-in-Altitude) is
calculated from the formula

Par.-in-Alt. = (Hor. Par.) X (cos Alt.),

and is always additive to apparent altitude.

This table is printed on the same principle as the *“ Total Co.rection in Altitude
of Sun and star. The numbers found in the table differ by "2’ throughout, and the
value is estimated correct to "1’ by interpolation at sight for the altitude and the
whole minute of parallax. Then the odd seconds of parallax are allowed for by the
aid of the small table on the right. ' .

In practice the correction for the Moon’s parallax is treated in a single correction,
in combination with those for semidiameter and refraction by means of the special:

table introduced at page 10, as shown in the example worked in an earlier part of the
* Explanation.”

Page 25. Planet’s Parallax-in-Altitude. —This is similar in character to the table
for the Moon. In practice, however, it is hardly ever of sufficient importance to be
brought into account, and the correction of a planet’s altitude may be effected by
means of the table for star’s altitudes to be found on page 8.

Page 26. Traverse Table.—The Traverse Table furnishes the results of the solution
of a large number of plane right-angled triangles, its primary object being for use in
connection with two important formule constantly employed in navigation, namely,

True Diff. Lat.==Distance X Cos Course.

Departure ==Distance X Sin Course.
With Distance from one mile to 600 miles as one Argument, aud Course for each whole
degree from 1° te 89° as a second Argument, the table supplies at sight the vaiues for
the corresponding Departure and Difference of Latitude.

Thus for a Distance of 363 miles sailed on a Course N. 37° W. we have

Diff. Lat, =363 cos 37°=28q":g.
Departure =363’ sin 37°=218"5.

The use of this table is not restricted to navigation, since, as is obvious from the
principle of its construction, it.is obvious that it may be employed for right-angled
triangles in general whenever an approximate solution only is required.

Page 104, &c. Conversion of Departure into d. Longitude.—After the use of the
Traverse Table to resolve the run into d. LAT. and DEP., it is necessary to convert the
DEp. into d. LoNG. For this purpose the table is entered at the top with the Middle
Latitude, that is, with the half-sum of the LAT. * from,” and the LAT. ““ 4n.”” Then
the d. LoNG. for any number of miles of DEP. from I to 100 is taken out.

When crossing the Equator, or when very near to the Equator, DEp.=d. LoNe.

Ex.~—From LaT. 34° 10’ S. to LAT. 30° 50’ S., departure was 172", ’

Mid-LAT.=324° and for 100 we have usssi d. Long.
w 72 . Z ”»

so for 172 ,, 204 %



EXPLANATION OF THE TABLES xiii

Since the formula is— :
d. LoNG. =DEP. X Sec (Mid-LaAT.),
it follows that the table, when vead from the top, is a multiplication table of numbers
by Secants. Thus-
69 sec 38°=87:6.
And reading from the bottom it is a multiplication table of Cosecants. Thus—
29 cosec 54° =358,

Page 114. Correction of Middle Latitude.—The preceding table, “ DEp. into d.
LoNg.,” is absolutely accurate only when the departure in question is taken wholly
on one parallel of latitude. For all practical purposes no sensible error can arise from
assuming it to be true for a day’s run of a fast ship. The correction here given renders
it mathemauca.lly accurate.

Page 115. The length in inches of the several degrees on a Mercator Chart.—In
this table is supplied in a convenient form, the length of each degree of a Mercator
Chaxt, to 70° of latitude, upon a scale of 1 inch to the degree of longitude.

The length in question is based upon the proportion

Difference of Meridional Parts _ .
F= s 1 inch.

Ex.—Required the length of the degree from Lat. 36° to Lat. 37°. Mer. Parts (table,
p. 116).

Lat. 37° 239265 t—'—4-i = 1-244 inches.
» 36° 2317:99 60

7464

The length for any other scale of longitude can easily be derived from the table
by ordinary proportion.

Page 176, &c. Meridional (or Mercatorial) Parts.—A Mercator’s Chart is not,
strictly speakmg a projection, but a map on which the ship’s track, cutting each
meridian in succession at a constant angle, is a straight line. To secure f}ns advantage
che meridians ar: drawn as parallel straight lines, and the chart-length of 1’ of longi-
tude is constant all over the chart. It follows that the chart-length of 1’ of latitude
must vary with the latitude, so as to satisfy the fundamental relation—

Chart-length of 1’ LAT. = (chart-length of 1’ LONG.) X (sec LAT.).

Using the notation of the calculus, let d! be an element of latitude in latituae /,
and let the chart-length of 1’ of longitude be the unit, then—

chart-length of d&l=di . sec },

and the distance from the equator to the parallel of latitude ! will be—
Mer. parts for LaT. l=fsec l.dl=gd—2l=loge cot (45°—¢4).
Using ordinary logarithms, and considering the earth as a true sphere, this gives as
“the formula for computation—
' Mer. parts for /=2-302585X 3437747 X log. cot § co-lat.
But if it be desired to take account of the spheroidal shape of the earth, then the
table must be entered not with the ordinary * geographical ’ latitude, but with that

latitude reduced to ‘‘ geocentric ”’ latitude by means of the table on p. 19, or, more
accurately, by p. 489.
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Ex.~-Calculate the Mendional parts for latitude 60°.
Log. cot § co-lat 60°=Log. cot 15° 571048

Log. -571948 1757356
Log. 23026 +362218
Log. 3437:75  3-536273

Log. 3655847
Nat. No. 45274
Page 125. Acceleration.—Owing to the earth’s yearly revolution round the Sun,
and the consequent apparent orbit described by the Sun in the heavens, the right
ascension of the Mean Sun increases uniformly at the rate of 3m. 56°55s. per mean
solar day. At Mean Noon on each day the hour angle of the First Point of Aries,
which is known as the Sidereal Time, corresponds with the right ascension of the Mean
Sun. At this instant of Mean Noon, therefore, we may obtain the right ascension of
Mean Sun from the column of the Almanac headed “ Sidereal Time.” The nght
ascension for any other epoch may be deduced by adding quantities taken from this
table. The Argument Mean Time proceeds by intervals of ten minutes, the adjust-
meni for odd minutes and seconds being effected by means of the table to the extreme
right of the page.
Ex.—Required R.A. Mean Sun for Greenwich Date 11h. 46m. 50s., 16th April 1918,

h. m. s.
Sidereal Time at Mean Noon, 16th April I 35 167
Correction for r1h. 4om. os. I 551
v &5 6m. 50s. I
R.A. Mean Sun I 37 129

A second use of the takle is to conveit an interval oi Time, expressed in Mean Time,
into Sidereal.

Retardation.—This table may be regarded as the converse of the preceding one,
being intended for the conversion of a portion of Sidereal Time into Mean Time, the
quantities taken out being subtractive instead of additive.

Pages 127, &c. Longitude Correction.—This table is an enlargement of a very
useful table printed in former editions by permission of its author, the late Mr. A. C.
Johnson, R.N. It is now arranged so that the quantities given differ uniforinly by
about 4 per cent. Mental interpolation will give a result correct to 1 per cent., which
is as close as is required. Thus for Latitude 49% and Azimuth 39° we can read I1-9
as the factor F.

It is well recognised that the resuits of all ““ Sights *’ taken at sea must be inter-
preted by position lines. The calculations of a ** Chronometer Sight " or “ Ex-
Meridian Sight ’ give as their final result nothing more than the information that the
ship may be at a certain point called a position peint, and must be on a line drawn
through the position point at right angles to the bearing of the body observed.

If a chronometer sight be worked with a dead reckoning latitude, the position
point has that latitude and the longitude given by the calculations, and the position
line can be drawn on the chart with the certainty that the ship is somewhere on it
if the sight be correct. But it is not known exactly where on the position line this
is, unless the latitude be exactly known.

This table gives a correction to the longitude for any error in the latitude used
in the calculations.
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Ex.—Suppose that ship’s position, as determined by Chronometer Sights taken when the Sun’s
Azimuth was S. 39° E.,, was 49° 6" N., 25° 11" W. when run up to noon. Suppose that at noon
the lacditude was found to be 49° 10’ N. '

The Chronometer Sights must have been worked with a latitude 4’ too much to the south-
ward. In other words, the correction to D. R. latitude is 4’ N. .

The table tells us that under these conditions there is a correction of 1’9 of longitude due
to each mile of error in latitude. The longitude is therefore wrong by 4 X 179 =7"-6.

To name this correction. The position line (perpendicular to the bearing S. 39° |S E
E.) runs N. 51° E. or S. 51° W., whichever we choose to call it. But it ig known that /
the latitude correction is N., so the longitude correction must be E. . Johnson |N W
suggested the easy diagrammatic method of naming the correction shown here. Write the
beanr_xg (S.E.) with its opposite (N.W.) underneath it. The position line is named by one of
the diagonals of the figure. From what we know of the latitude correction, it must be the N.E.
diagonal.

A convenient form of work, is as follows : —

Dead Reckoning from Chron. Sights 49° 6’ N., 25° 11’ WL Azimuth.
Correct latitude by Noon Sights 49° 10’ N. v g S39°E
Correction to latitude 4 N. N /w l
longitude =19X4 7°-6 E. Factor
N 19
Noon Position, corrected 49° 10’ N, 25° 374 W.

No apology is needed for treating this question at length, for on its proper under-
standing depends the whole theory and practice of navigation. For the further use of
the Factor F in combining two chronometer sights, reference must be made to text-
books on navigation. :

Page 130. Latitude Correction.—This original table has been computed as a
complement to Mr. Johnson’s. If an Ex-Meridian Sight be worked with a longitude
afterwards found to be in error, then the table shows what is the correction to latitude
due to each minute of error in longitude.

Suppose that an Ex-Meridian Sight, taken on a bearing S. 14° E., gave a latitude of 35° N,
when worked with a longitude of 31° W. Suppose, further, that it was afterwards found that
the longitude should have been 31° 10" W.

Azimuth.
Correction to longitude 10’ W. SI14°E
' latitude =-20" X 10
=2"S. L
Thus correct latitude at Sights was 34° 58" N. N W
Factor f

' *20
Page 133. Hour Angle and Altitude on the Prime Vertical.—From what has
been said above, it is clear that if a body is observed upon the Prime Vertical—that
is, due E. or due W.—the position-line runs due N. and S,, or, in other words,
the longitude found is correct. When possible, therefore, the altitude should be
observed when the body is near this favourable position. The table supplies the hour
angle and altitude which enable the observer to secure this advantageous condition.

Suppose the latitude to be 40° N. and the Sun’s declination 12° N. Then the table gives
H.A.=5h. and Alt.=1g° about. Thus sights for longitude taken at 7 A.M. or 5 P.m. will be in-
dependent of error in latitude, andrif an altitude of about 19° be set on the sextant, that wilt
ensure the proper moment being caught.

Of course if the declination be of contrary name to latitude the body never crosses
the prime vertical. If declination be of the same name but greater than latitude,
the table gives the moment of maximum Azimuth which is then the best available.
Thus in latitude 11° N. for an observation of Castor (32° N.) for longitude] the altitude
to be set on the sextant is about 21°
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Page 138. Amplitudes.—At rising and setting the difference between 6h. and the
hour angle is called Time-Amplitude ; and that between go° and the Azimuth is
called Bearing-Amplitude. It is evident that a body of N. declination must rise
N. of E,, and set N. of W.; and also that when declination is of the same name as
latitude the hour angles of rising and setting are both greater than 6h. There can
never, then, be any doubt about which way to name the Amplitudes.

Ex.—In LaT. 50° N., when Sun's DEc. is 19° N.

Time of Sunrise 6h.—1h. 37m., of Sunset 6h.41h. 37m,
=4h. 23m. =7h. 37m.

Bearing at Sunrise =30°4 N. of E., at Sunset=30°4 N, of W.
=N. 59°6 E. =N. 59°-6 W.

Page 143. Correction to Observed Amplitude.—The preceding table is calculated
for the moment when the sun’s or body’s #rue altitude=0°. The apparent altitude
of sun or star is then about 34, owing to the effect of parallax and refraction. The
apparent altitude of the moon is about 20’ below the horizon.

If, then, the sun or star be observed when its centre appears to be on the horizon,
an error is introduced which can be corrected by this table. The correction is (for
sun or star) always additive to the observed Azimuth reckoned from the elevated pole.
For the moon, % of the correction is to be applied in the opposite way.

Page144. Ex Meridian Tables.—These tables offer a short and handy method
of obtaining the Reduction to the Meridian.

If in the ordinary *‘ triangle of position” P X Z, p, ¢, z denote the polar distance,
. co-latitude and zenith distance which form the three sides, and % the hour angle, we
have by a fundamental formula

vers g =vers (p—c) +sin p sin ¢ vers A,

Iet x denote the First, or principal, Correction, which subtracted from z, the
observed zenith distance, gives (p—c) the meridian zenith distance, and the expression
becomes

vers £ =vers (z—x) +sin p sin ¢ vers A.
Whence may be deduced the relation
¥ _sinpsinc
sin —2 ==—sr
sin p sin ¢

sin z
occur, viz. (1) Latitude and Declination of Contrary Name, (2) Latitude and Declina-
tion of Same Name, and (3) Observations below Pole.

Ex.—Lat. and Dec. (Smaller). Contrary Name. Lat. 50° N., Dgc. 8°. Here p=98°
cm40°, (p—c) =8=58°

hav A.

Table No. 1 gives the logarithm of for each of three cases that may

L.Sin ¢8° 9:99575
L.Sin 40° 9-80807
L. Cosec 58° «07158
Tab. Log. _9-8'7540

Table No. 2 supplies the Tabular Logarithm of the Haversine of the Hour Angle.
fhus if H h=25m. 42s., L Hav 25m. 42s., which is 7:49699, is given to three places
of decimals as 7°497.,

Table No. 3 gives the values corresponding to Sin g in minutes and tenths of
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a minute  To avoid multiplication by two, the Tabular Logarithm for a given angle
is that of the Sine of one half the angle.

Thus for 0° 44’ as Argument we have the Tabular Logarithm 7-806, which is L
Sin 0° 22’.

The following example illustrates the method of working : —

Ezx.—LAT. 47° 20’ N., by Dead Reckoning. Sun’s DEc., 14° 11’ N. Ship A.T. 3om. 18s.

Table No. 1 gives Tab. Log. C -080
w 0 2 , Tab.Log. H 7640

(Sum) 7-72'0
From Table No. 3 we have the First Correction 36’1, additive to the altitude.

Construetion of Table No. 4, the ‘“ Second Correction > Table.—If x denote the
value of the First Correction, obtained as above by means of Tables (1), (2), (3), and
y the more exact value of the Reduction when a Second Correction has been applied,
it may be shown that

t
Second Correction =y —x = __xi_ tan alt. sin 1°.

To obtain the value of a term, therefore, we require as Arguments the First Correc-
tion x and the altitude.

The Rule will be—

Add the logarithm of one half the square of the First Correction to that of the
tangent of the altitude and of Sin 1’. The sum of the three is the logarithm of the
Second Correction in minutes.

Ex.—Altitude = 50°, First Correction =80’.
Log. 3200” (i 6400) 3°50515

Log. Tan 50 07619
L. Sin 1’ 6-46373
(Sum) 10°04507
Second Correction 11

In the example worked above we have the First Correction 36’1, altitude 57°, we
have —-3' as the Second Correction. The net value of the Reduction, therefore, is
361 —-3'=35"8.

Pages 158, &c. Astronomical Tables.—These tables have been carefully cor-
rected and brought up to date. Although only under exceptional circumstances to
be used for finding positions, they are convenient for occasional use in such problems
as finding Azimuth, Time of Sunrise, &c.

The list of stars arranged according to right ascension indicates the order in which
the several bodies arrive at the meridian, while that which follows the values of
declination shows what stars will be above the horizon in any latitude. The latter
table, viz. the list of principal stars arranged in order of declination, should be parti-
cularly useful in discovering the identity of an unknown star from the approximate
values of its altitude and azimuth by means of Alt-Azimuth Tables.

Page 168, &c. Mast Head Angles.—The title indicates only one of the uses of the
table. The angles given are those subtended by a base line (here called height) at
various distances, the base line being perpendicular to the line joining its middle
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point to the point of sight. Twosets of tables are provided, one ranging to 2000 yards,
and the other to 8000 yards. Finally, on page 171 will be found a table whereby a
base line may be measured with a theodolite and a 10-foot pole.

Page 176. Table of Positions.—With reference to this table it should be observed
that the navigator should, when possible, rely upon his charts and sailing directions
rather than on these positions.

Page 200. Logarithms of Numbhers.—The user of a book such as the present is
supposed to understand the nature of a logarithm and the rules for the use of
logarithms. The following remarks are intended simply to explain the special
arrangement here adopted.

The numbers are in black-faced type, the logarithms are ordinary type. Numbers
proceed from o up to 10800. For 5-figure work interpolation is necessary from o to
9999. Consecutive logarithms are differenced in the column ““ D,” and proportional
parts are given for each difference. But for 5-figure numbers lying between 1oooo
and 10800 the logs. are given in full, so as to save interpolation for large differences.
Reference should be made to the Nofe, p. xxi.

Experienced computers are much divided with regard to some points in connection with the
use of logarithms. The Reviser records here his personal opinion.

1. Use of Co-Logarithms.

I
log. == =log. 1—log. 39-25 =0-00000 —1-59384
=%-40616 =co-log. 39-25.

Here the arithmetical complement of -59384, namely -40616, is the co-log. of 39-25, that is, the log.
of 39;5.
right and subtracting each digit from g until the last, which is taken from ro. As regards the
characteristic preceding the decimal point, it is seen to be MINUS the number of digits before the
point in the number.

It can be read from the tables just as easily as the log. itself, proceeding from left to

log. =0 —(3:59384)=2'40616 =co-log. 003925,

I
1003925
and it is seen that here the characteristic is PLUS the number of moughts after the point in the

decimal. . o )
It is worth while to use co-logs. so long as no interpolation is required.

57:92 %0173 log. 57- 17628
9491 X 1-0605 8- 5792 76253
log. -o0173 Z-23805
co-log. -949r1 002269
co-log. 1-0695 T-97082

Ex.—N=

—-98716 log. N = T'99439

2. Use of the Negative Characteristic (Z, 3. &c.).—It seems to be'a.ccepted'as the best practice
to write g for Y, 8 for Z, &c., whenever log. sines, cosines, &c., are involved in combination wgth
numbers. In systematic calculation of results which are known beforehand to have negative
characteristics, the positive numbers 9, 8, &c., should certainly be used.

Page 236. Log. Sines of Small Angles.—For very small angles the differenpes c_>f
log. sines and log. tangents are both large and variable, so that intqrpolaﬁon is
inconvenient or impossible, and this table provides, to each 107, the functions needed.

In some astronomical formulz, such as those, for instance, which determine the
correction for refraction, the logarithm of Sine 1” is sometimes required. It should
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be noted that the sines of small angles practically varying with the an L Sin 1*
=L Sin 10" —Log. -.=5-68557—1=4-68557: ge

Page 240. Logarithmie Trigonometric Funetions.—In the arrangement of these
tables the usual convention has been observed of increasing the characteristics of
such functions as are less than unity by 10. By this means the use of negative
characteristics is avoided.

A new departure has been made in separating the functions from one another.
A considerable saving of time will accrue from the fact that only 18 pages are thus
devoted to any one function, and as 10 degrees are visible at each opening, it is very
easy to place the left-index finger on the desired part of the page without any search.

The direct functions, sine, tangent, secant, all read downwards ; the complementary
functions, cosine, cotangent, cosecant, read upwards, and their proportional parts are
subtractive.

The small tables of proportional parts (P.P.) read to tenths of 1’ or 6* of arc, and
give at sight all the accuracy desirable ir ordinary calculations.

The Note on Interpolation (p. xxi) should be consulted.

Pages 294-394. Logarithmie and Natural Flaversines.—The Haversine (half-
versine) is a function whose utility has been too much ignored by writers on trigo-
nometry. It simplifies the solution of triangles, both plane and spherical, in a
remarkable manner, and eliminates all ambiguity from the results. It is defined by

hav A =} vers A =3(1 —cos 4) =sin® } 4.

The saving of time and labour effected by the use of versines or haversines will
easily be appreciated on reference to any of the texi-books on Trigonometry or
Nautical Astronomy used in the Royal Navy.

Attention may be here drawn to an improvement recently introduced in the
arrangement of the Haversine Table, whereby the I Haversine and the Natural
Haversine are shown in adjacent columns, the Natural Haversine being printed m
heavier type. By this means the process of finding the third side in the solution of
a spherical triangle, when twe sides and the included angle are given, is greatly
facilitated. As this particular case constantly occurs in determining position lines
on the Marcqg-Saint-Hilaire principle, now a standard method followed in our own
and in foreign Navies, this arrangement of the Haversine Tables is of considerable
importance. The simplification thus effected may be illustrated by the following
practical example :—

Ez.—Solve the spherical triangle 4BC, where 4 =102° 20’, b=50°, c=40° 15".

A 102° 207 L.hav 9-78305
b 50° o L. sin 9-88425
¢ 40°15 L. sin 9-831032

L. hav 9-47762 N. hav -30035
b~c 9° 45" . N. hav -00722

& 69°219 N. bhav -30757

It will be noticed that when the value for L. Hav @ is once obtained, viz. 9-47762,
that of N. Hav 6. -30035, is found in the table by the side of it, the actual value of
the auxiliary angle # being immaterial. When the tables of logarithmic haversines
were given separately it was necessary, having taken the value of 6, in this case
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66° 28, from the logarithmic table, to enter the table of natural values with this
angle as argument, and thus arrive at the required natural function. A wholly

unnecessary operation is thus avoided by combining the two functions, logarithmic
and natural, in a single table.*

Page 400. Half Log Haversines.—Some apology may seem to be necessary for
assigning so many pages of tabular matter to a table which is practically obtained
by dividing the values given in the Log. Haversine Table by two. To justify the
inclusion of this table, however, it is only necessary to cite an important problem of
navigation, that of finding Hour Angle from the data, Latitude, Declination, and
Zenith Distance.

This is a special case of the general problem of finding an angle of a spherical
triangle, in which we have given three sides, and the typical formula is

Hav A =VHav (a+b—¢) VHav (a—b+c) Cosec b Cosec c.

If we were limited to the ordinary table of Logarithmic Haversines, division of the
logarithm would be necessary in two cases. The table of half Haversines not only
saves this unnecessary labour, but secures also greater accuracy in computation,
for it was a matter of common experience that before the introduction of this table
more errors were made in this process of division than in all the other parts of the
operation together.

The example which follows, from Goodwin’s Plane and Spherical Trigonomeiry,t
may serve to illustrate the use of the table.}

Ex.—In the spherical triangle ABC, a=124° 10’, b==89° 0’ 15", ¢=108° 40’ Find the
angle 4.

c 108° 40’ o° Log cosec ¢ *02347
b 89° o’ 15" Log cosec b *00007
—_— 3+ L. bhav (a4+c—b) 4-97800
¢c—b 19° 39" 45° 4+ L. hav (a—c—b) 4-89801
a 124° 10° 0O
—_—— (Sum) L. hav 4 9-89955

a+z—b 143° 49" 45"
a—c—b 104° 30" 15" A=125° 56" 7.
Pages 430-483. Natural Trigonometrical Funetions.—These are in every respect
similar to the Logarithmic Functions, and are read in the same way.

Page 484. Cireular (or Radian) Measure.—The mathematical Unit of Angle is
that angle whose arc is equal to the radius of the circle on which the arc is measured.
The table gives lengths of arc for radius unity, for whole degrees, minutes, and seconds
to five places, with a supplementary sixth figure to strengthen the resuit.

Esx.—Find the Radian Measure of 83° 27’ 33”. 4
For 83° 1-44862,3

27" -00785,4
33" +00016,0

Radian Measure of 83° 27 33" 1-45664
Page 485, &c. Contains a variety of miscellaneous information.

¢ The combined form of table (the copyright of which is strictly reserved) first appeared in
the Requisite Tables, by Mr Percy L. H. Davis, published by J. D. Potter in 1905, and isincluded
is volume by permission.
i tguPlam andysphen'cal Tyigonomelry. By H. B. Goodwin, M.A., Naval Instructor, Royal
Navy. Longmans, Green & Co. )
t In the Admirally Manual of Navigation the use of the Haversine table is recommended for
this problem, and the solution is as follows :—

a xzq.. 10 6 N.hava -78080
b 89 o0 15 Log cosec b “00007
¢ 108 40 © Log cosec ¢ 02347
¢c—b 19 39 45 N. hav (c—b) -02915

Difference *75165 Log difference 9-87602

A==125° 56°-8. Sum (L. hav 4) 9-89956



NOTEV ON MATHEMATICAL TABLES
AND INTERPOLATION.

QUANTITIES such as those tabulated in this book, namely, logarithms, trigonometrical
ratios, etc., are, as a rule, incommensurable—that is, they cannot be exactly expressed
by any finite number of figures. The final figure as printed is the nearer to the
truth, and may be in excess or defect by half-a-unit. This is shown by the examples
below. ’

Number. Log. to 7 fig. Log. to 5 fig. Error in 5th fig.
2 *30103,00 ‘30103 ‘00
2°25 *35218,25 35218 ‘25 defect.
2369 "37456,51 "37457 "49 excess.
2°431 "38578,50 "38578 "50 defect.

Technically, we say that log. 2369 is “forced over,” but log. 2431 is “forced
und.c-” ‘

It is necessary to have correct ideas about the error which forced figures may
introduce into results obtained by using 5-figure tables.

In taking out a logarithm or natural sine, etc., there may be an error of § in the
last place. For convenience this is written ==, 5. If, then, two or more logs. are
combined by addition or subtraction, the combined error may be anything betweer
oand #=1. Using the logs. given above :—

2°431 X 2°369 *76035,01 76035 ‘o1 defect.
2°431+2°369 "0112I1,99 ‘orI2I ‘99 defect.

And if any number of logs. (say 4) be combined by sums or differences, there
may be an error in the last place of Zalf that number, ze., an error of 2 for a block of
four logs. But the error may just as likely be o, and its probable value for a set
of four logs. is nbout 1.

In faking out the number corresponding to a given log., there are two sources of
error, namely the 4, 5 in the tabulated log. and the 4, 5 in the calculated log. At
the worst, there is 1 in the 5th place of logarithms to cause error in the result.

This corresponds accurately to an error of 1 in 43,430 or 23 in I,000,000.
Hence the percentage error inherent in s5-figure work is about ‘0023 per cent. as
a maximum.

The above remarks have been written to forestall any objection to the Reviser’s
carefully considered decision to reduce the logarithms in Inman’s Tables to 5-figure
quantities. It is a mathematical fact that 5-figure calculation is amply sufficient for
the needs of the seaman in particular, and in general for all computers except those
concerned with the most refined results of the astronomer or surveyor.
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A few concrete examples will strenihen this statement. Take the case of deter-

mining Hour-Angle from a given Log. Haversine, say 9'69955 ==1I, the =1 allowing
for errors:—

h m =
For 9'69954 we have 6 o 18
9'69955 - 6 o 183 }or possible error + -3 sec.
969556 ,, 6 o 187
At 4h. the possible error is reduced to + 2 sec.
” sh' ”» ” » :t ‘T sec.

It is necessary to point out that there are certain cases wheré no number of
figures can be expected to give satisfactory results. Take the case of finding an
angle from its Log. Sine 9°99989,00.

Using 5 figures, the angle may be anything between 88° 41’ and 88° 44’ ;
Using 7 figures, the limits are 88° 42’ 38” +1”.

This last result means that in order to find the angle within 1” we must know its
log. sine correct to 1 in 10 million.

Cases like this are called “ill-conditioned,” because the smallest error in the data
is magnified many times in the result. The computer must lay to heart the general
rule that, where any choice is possible, he should choose “ well-conditioned ” cases ;
but if an “ill-conditioned ” problem be forced upon him, he should distrust his results,

INTERPOLATION.

In technical language the index quantities in a . N
Table such as the specimen are called “Arguments” 26 o D-
and the tabulated quantities are “ Reswltants” The i
column headed “ D ” is called the “ Difference Columnn,” ° S ;‘2
and contains the differences between successive Re- 1 9'68850
sultants, marked 4 when the Resultants increase 32
numerically downwards. z 9'68832 32

In the specimen, then, we “enter” with an “ Argu- 3 968914
ment” 26° 1’, and “take out” a “Resultant” L. tan.’

0'68850, noting that the “difference” is 432 for 1. It happens that here the
Resultants proceed by a uniform difference of + 32.

Suppose that L. tan. 26° 2”4 be required, it is got by “ /nzerpolation” between the

Resultants for 26° 2’ and 26° 3, and the matter is one of simple proportion. Thus:—
L. tan 26° 2”0 = 9°68882 diff. + 32 for 1"
Add (‘4) (32) = 12,8
L. tan 26° 2"°4 = 9'68894,8, or 9'68895 to 5 figures.

Now, as explained above, L. tan 26° 2’ is really 968882 =, 5; so if we reduce to
five figures by calling 12,8=13, we involve an error of anything from —, 7 to +, 3
as chance may determine. ‘ 4

It is a standing rule, therefore, that to secure the utmost accuracy when combining
logs. the interpolation must be carried out to an extra place of decimals so that there
shall remain no error except that due to forced figures in the tabulated logs.

A practical case is that of finding Hour-Angle for rating chronometers. Here
the navigator should extend to a 6th place, separated from his block of 5 figures by
a comma. ‘



