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PREFACE

Combinatorial theory is largely the study of properties that a set or family
of sets may have by virtue of its cardinality, although this may be widened to
consider related properties held by sets carrying a simple structure, such as
ordered or well ordered sets. These properties are relevant to either finite or
infinite sets, although frequently the questions that pose interesting problems
for finite sets are either meaningless or trivial for infinite sets, and vice-versa.
There has been a recent great upsurge in the study of finite combinatorial
problems, and a significant, though more manageable, increase in interest in
the combinatorial properties of infinite sets.

This book deals solely with combinatorial questions pertinent to infinite
sets. .

Some results have arisen purely in the context of infinite sets. One of the
early results in the subject is the following: given an infinite set S of power k
then there is a family of more than k subsets of § any two of which intersect
in a set of size less than k. Chapter I looks at questions related to this. Prob-
lems of a different nature for families of sets are studied in Chapter 4, firstly
a decomposition problem and then delta- and weak delta-systems. As a special
case is the following: given any family # of ¥, denumerable sets there is a
subfamily B of L of size ¥, such that the intersection of two sets from B
is the same for all pairs from “B. Chapter 3 is devoted to the study of set
mappings, that is, functions f defined on a set .S such that given any x in S
then f(x) is a subset of S for which x & f(x). Conditions are placed on the
family {f(x); x €S} which ensure the existence of a large free set 7' ( a subset
of S such that x € f(y) and y € f(x) for all x, v from T).

Other results stem from problems that have been extensively studied for
finite sets, and have been found to yield interesting questions when reformu-
lated to apply to infinite sets. For example, in Chapter 5 we study infinite
graphs, and in particular show that for any infinite cardinal k there is a graph
with chromatic number k which contains no triangle, or indeed no pentagon:
however any graph which contains no quadrilateral has chromatic number at
most Xo. Chapters 2, 4 and 7 are devoted to various extensions of Ramsey’s
classical theorem, which (in its finite form) states: given integers #, &, r if the
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n-clement subsets of a finite set S are divided into r classes then provided that
S is sufliciently large there will be some k-element subset of S all the n-element
subsets of which fall in the one class. Chapters 2 and 4 cover ordinary partition
relations, polarized partition relations and square bracket partition relations
for cardinal numbers, whilst Chapter 7 is concerned with ordinary partition
relations for ordinal numbers.

Familiarity with the standard notions of set theory has been assumed
throughout. An Appendix summarizes those properties of cardinal and ordinal
numbers and their arithmetic which are basic to a study of this book.

The development of infinitary combinatorial theory over the past twenty
years or so has been greatly stimulated by associates of the Hungarian school,
under the encouragement of Paul Erdos in particular. A glance at the list of
references gives some indication of how many of the results in this book show
liis influence.

To all those people who have created this subject, I here acknowledge my
debt and record my gratitude.

Brisbane, 1976. Neil H. Williams



FOREWORD ON NOTATION

The following is a brief summary of standard notation in use throughout
this book. More technical notation is introduced throughout the text as the
need for it becomes apparent. The Index of notation (pp. 206—208) provides
a ready reference to the page on which a symbol is first defined.

Set membership is denoted by €, and C is the inclusion relation with C
denoting proper inclusion. The set of all subsets of a set is Bx, so
Rx = {¥:y Cx }. The union of all the sets in x is written Ux and the inter-
section Nx, so

Ux={z:vexizey):Nx= {z;: VyEX(zEY)}.

Set difference is written x — y,sox —y = {z €x:z €y }. The set of unordered
pairs, one member from 4 and the other from B is 4 ® B, so

AoB={{x,y}hix€A4, yEBandx#y}.

Ordered pairs are written {x, ), and sequences as (X, a < 8. The length
of the sequence {xq; a <) is §, written ¢n{x,;a <= . 1f x, y are two se-
quences then x "y is the concatenation of x and y, that is, the sequence ob-
tained by placing the entries from y in order after those from x. If 4 is any
set, then the domain and the range of A are defined by

dom(4)= {x:3Fy(x, WEA)} ran(4) = {y: Ix(x, W EA)}.

That f'is a function with domain A and range contained in B is indicated briefly
by writing f: A = B. The set of all such functions is 4B, s0

Ap={f.f:A->B}.

If f: A = B, then the value of f at x is f(x). The restriction of f to a set X is
written f [ X, so

frXx={x, meEfxeEX}:
and f[X] is the range of f T X, so
fIX]1= {flx):x€X}.

The words set and family are used synonymously. However an indexed
family, written (4;; i € I), stands for that function 4 with domain / and
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A(i) = A; for each i in /. The cartesian product of an indexed family is written
X(A;:i €1). A decomposition of a set A is a family A of sets such that 4 = UA;
this is the same as a partition of A. The partition A is disjoint if the sets in A
are pairwise disjoint. For elements @, b of 4 and a partition A of 4, the nota-
tion

a=b(mod A)

means that there is some Ay in A such thata, b € Ag.

The cardinality of a set X is written |X], and [X]¥, [X]<X, ... denote
{Ycx;|Yl=«k}, {YCX:|Y| <k}, ... The operations of cardinal addition,
multiplication and exponentiation are written n + 6,1 - 0 and n?, while the
corresponding ordinal operations are written a + 3, o8 and o®. The infinite
cardinal sum and product of an indexed family (n;: i € I) of cardinals are
written Z(n;; 1 € ) and [I(n;: i € I), whereas the ordinal sum and product of a
well ordered sequence {a,,: v < ) of ordinal numbers are written Zq(a,; v <)
and MMy(ay; v < f).

Let X be a set ordered by a relation=<. By tp(X, <) or tp(X) is meant the
order type of X under<. For subsets 4, B of X, write A < B to mean that
a<b forallain A and b in B. The notation {xy, x5, ..., X, }< refers to the
set {xy, ..., X, } and further indicates that x; <x, <...<Xx,,. A subset 4 of
X is cofinal in X if, for all x in X, there is @ in 4 with x <a. If @ is an ordinal,

[X1*={ryCXx;tp(Y,<)=a}.
The ordinal numbers are defined so that if « is an ordinal, then
a= {B;Bis an ordinal and B < a} .

If A is a set of ordinals then sup 4 is the supremum of 4, so sup 4 = UA.
Cardinal numbers are identified with the initial ordinals. The sequence of in-
finite cardinals is Ng, Ry, 85, ..., N, ... . The cardinal successor to a cardinal
k is denoted by k*; the iteration of this n times by k). The cofinality of a
cardinal k is written k', so k" is the least cardinal such that k can be written as
a sum of k' cardinals all less than k. The cardinal k is regular if k' = k, and
otherwise k is singular. A cardinal of the form A* for some X is a successor
cardinal;, other cardinals are limit cardinals. The cardinal k is a strong limit
cardinal if 2M < k whenever XA < k. Regular limit cardinals are weakly inacces-
sible; regular strong 'imit cardinals are strongly inaccessible. The cardinal beths
(starting from k) are defined by induction:

u
oK)=k , Y (k)= 27"

The Generalized Continuum Hypothesis (GCH) is the statement: 2% ="
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for all infinite cardinals k. The GCH has been assumed throughout this book
whenever it leads to a simplification in the statement or proof of a result.
Theorems reached with its aid have the letters GCH appended to their result
number (as in Theorem 1.6 (GCH)). In many cases the full strength of the
GCH is not required, or the result could have been reformulated in a more
involved form so as to avoid GCH all together. It is left to the interested reader
to observe when this is so.

The Greek letters k, A, ¢, 1, 6 are used throughout to stand for cardinal
numbers, and usually k, A are infinite. Other small Greek letters denote or-
dinal numbers, as do &, / (except that w is always the least infinite ordinal).
The letters m, n always stand for non-negative integers.
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CHAPTER 1

ALMOST DISJOINT FAMILIES OF SETS

§1. Almost disjoint families

One of the early results in combinatorial set theory was the following theo-
rem of Sierpinski [84]. He proved that any infinite set of power k can be de-
composed into a family of more than k infinite subsets in such a way that
A N B| < |Al, |B| for any two different subsets A, B from the family. Two
sets A and B will be called almost disjoint when |4 N B| < |A4|, |B|. Almost
disjoint systems of sets were examined in more detail by Tarski [94]. It seems
appropriate to start this book with an investigation of this and related prob-
lems.

Definition 1.1.1. The degree of disjunction () o1 a tamily A is the least
cardinal 0 such that |[4; N A,| <0 for all pairs 41, A, in A.

We shall be concerned with finding families <{ of subsets of a given set of
infinite power k with degree of disjunction at most 6 for fixed cardinal 6. We
need consider only the case when 6 < |4] for all 4 in in o (and so certainly
6 < k) since otherwise the condition §(¢{ ) < 6 imposes no restriction on <.
Clearly one can always find such a family of power k, consisting in fact of
pairwise disjoint subsets, so the problem is to find when there is a family &
with |&{| >k and 6(#{) < 0. An upper bound for || is given by the follow-
ing theorem.

Theorem 1.1.2. If an infinite set of power k can be decomposed into a family
A with |A| = Nand 5(sA)< 0, then \<«k".

Proof. We may suppose that in fact it is the set k¥ which has been decomposed.
So suppose k = UsA where || =X and §(A) < 6. For each 4 in o with
|A| >0, choose A* in [A4]°. The condition §(s{) < 6 implies that the mapping
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which sends 4 to A* is one-to-one. Thus {4 € #; |4| > 0} has cardinality at
most that of [k]?, and so || < |[k]=0] = k?.

The existence of large almost disjoint decompositions will follow from the
next theorem. The method of proof is essentially that of the original Sierpinski

paper.

Theorem 1.1.3. Let k be infinite, suppose 1= 2 and let 0 be the least cardinal
for which k < n°. Let \ be a cardinal with \< 0 and \' = 0'. Then every set of
power k can be decomposed into a family of n° almost disjoint sets each of
power \.

Proof. We show that such a decomposition is possible for a particular set of
power k; it then follows that this can be done for any set of power k.

Since 0 is least for which k < 1’ we have 0 < k and consequently A < k.
Thus k - A = k. The condition A< and A" = 6" means that there is a sequence
{a(v); v <N of ordinals a(v) with a(v) < 6 which is cofinal in 6. Put
S = U{*®n: p < A}. The choice of 6 ensures that [*®n| <k for each v, s0
ISI < Z{1*®k|; » < N} <k - A= k. We shall define a decomposition of S. For
each function g in %7, put

Sg= {gha@);v <A},

80 |Sgl = A. And for different f, g from 017. let 3 be the least o:dinal such that
f(B) # g(B). Then whenever a(v) > B, for any 4 in S with dom(k) = «() it fol-
lows that 1 & Sy N Sg. Thus [Sy N Sg| < [B| < A. This means that if § =
{Sf;fe en}, then & is a family of ne almost disjoint subsets of S each of
power A.

If IS| = k, we have finished. If S| <k we must add to S to build it up to
power k. Choose any set S; of power k disjoint from S, and divide S; into a
family o§; of pairwise disjoint sets each of size A (which is possible since
Kk - A=k). Then the family U &§; decomposes S U S in the required manner.

As a first corollary to-this theorem, we deducesthe Sierpinski result men-
tioned above. For given the infinite cardinal k, let 0 be least such that k < 29,
so necessarily 0 is also infinite. Then by Theorem 1.1.3. withn =2 and A =0,
any set of power k can be decomposed into a family of 22 almost disjoint sub-
sets each of power 0, that is, into a family of more than k almost disjoint in-
finite sets.

If the Generalized Continuum Hypithesis is assumed, the theorem leads to
the following result. Given infinite cardinals k and A with A<<k and N =k,
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then every set of power k can be decomposed into a family of k™ almost dis-
joint subsets each of power A. This follows from Theorem 1.1.3 by putting
n =2, and noting that by the GCH, 0 = k is the least value of 6 for which

Kk < 2°. However, this result can be deduced without making use of the CGH,
by adopting a different method of approach. When A = k, this was known by
Erdos in 1934 (see Erdos, Gillman and Henriksen [34, Lemma 4.1]). A dif-
ferent proof is given by Sierpinski [87].

Theorem 1.1.4. Let k and \ be infinite cardinals with N\< x and \' = «k'. Then

every set of power k can be decomposed into a family of more than xk almost
disjoint subsets each of power \.

Proof. The argument splits into two cases, depending on whether k is regular
or not.

Case 1: k regular. Here k = k' = X' <A<k, sok = \. Let K be any set with
IK| =k, and let X be a decomposition of K into k disjoint sets each of power
k. We shall show that no family 9B with [B| <« " is maximal (under the sub-
set relation) in the class ¥ of all families extending X consisting of almost
disjoint subsets of K each of power k. Zorn’s Lemma applies to %, and so
there is a maximal family «{ in 3. But then we must have || > k", and the
theorem holds in this case.

So let B be a member of ¥ with [B| < k™. Since A C 9B, in fact |B| = k.
Let (By; 1 < k) be an enumeration (always without repetitions) of “B. For
each p with u <k, note that |U {B, N B,;v < u} <k since §(B) <« and k
is regular. Hence we may choose inductively elements b, when u <k so that

by €B, —U{B,;v<u}.

Then b, # b, whenever v < . Put B= {b,;u<«} so |B| = k. For each u with
u<rx we have B, N B C {b,;v<p} and so |B, N B| <«k. Hence the family
9B U {B}isin the class 3§, and so B is not maximal.

Case 2: k singular. Choose cardinals k, for o with 0 <k’ such that k' <k,
<Ky <..<kand Z(kg;0<k')=k.Since \' = k' we can choose cardinals Ao
for o with 0 < k' such that always Ay, <\ and Z(A\: 0 < k') = A. Let K be any
set with |K| =k, and let {K4;0<«k'} be a decomposition of K into k" disjoint
sets each of power k. This time we show that no family 9B with [B| <k is
maximal in the class & of all families & of almost disjoint subsets of K with
always |4 N K 4| = Ay for each A in A. Here Zorn’s Lemma applies to (3; but
any maximal member of (% must have power greater than k, as desired. -

So let B be a member of ¢ with |B| < k™. Let (By;u < 6)be an enume-
ration of 9B with 0 <«k. For each o with 0 <«k', choose X with [X4| = A, and
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Xo CKy — U {B,:u<kg}. Since
lU{Ko NBusu<koH <A, ko <k =Kyl ,

this is always possible. Put B=U{X,:0<k'}.s0 |Bl = Z(\y: 0 < k") = \. Note
that given p with u <k, if 7 is least for which u <k, then X, N B,, = ) when-
ever 0 =>7,and so BN B, C U{X,:0 <71} Hence BN By < Z(\g; 0< 7)<\
[t follows that the family B U {B}isin (4, and so B is not maximal.

If we assume the Generalized Continuum Hypothesis, then we can show
that the condition A<k and X" = k" of Theorem 1.1.4 is also necessary for the
existence of such a decomposition. This result goes back to Tarski [94]. Un-
fortunately there appears no way to avoid the GCH for this proof. We need
first the following easy lemma.

Lemma 1.1.5. Let \ be a cardinal, let (3 be an ordinal with \ not cofinal in .
For each set A with A € [6]>>‘ there is an ordinal o with o < (3 such that
laNAl=A\.

Proof. Given A4 with A € []”™, take a subset A, of 4 with order type A. Since
A\ is not cofinal in f3, there is a with a < f such that 4; Ca. Then4; CaNA4
so that aNA|=[A44]=\.

Theorem 1.1.6 (GCH). Let k and X be cardinals with X' # k'. Then any decom-
position A of a set of power k into subsets each of power at least \ with
S(A)< N, has power at most K.

Proof. We may suppose that « is a decomposition of the set k, so suppose
A C [k]7N with §(A) <\, and we need only consider the case A <k. So in
fact A<k, because X' # k. Since X" # k" we know X is not cofinal in k. Ap-
plying Lemma 1.1.5, for each 4 in & there is an ordinal a with a <« and
N Al = \. For each a put A, = {4 € ;s least for which la N A| > A}
Then A = U { Ay a<k}. Thus [oA| < (| Agl: a < k).

We seek an estimate of | ,|. Since §(A) < A, for distinct 4, A5 from
A, we have

(@aNADN(@NA)I<|A; NA <A,

andsoaNA; #aNA, Thusif B = {aNA:4E AL} then |Byl = | Ayl
Now 6§(By) < A and B, is a decomposition of the set a, so by Theorem 1.1.2
we have | Bl < laf. However A < k and |a < k so by GCH, |Bgol < k. Thus

| A 4I<k.Consequently || < Z(]| Ayl: a <k)<k -k =k, and the theorem

is proved.
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Corollary 1.1.7 (GCH). No set of power k can be decomposed into a family
A of more than k sets each of power greater than \ such that §(s{) < \.

Proof. Such a decomposition is certainly impossible when X" # k', by Theorem
1.1.6. So suppose X" = k. Since " <X and (\*)' = \*, in fact k" # \*. But now
Theorem 1.1.6, with X replaced by X, yields the result.

It is worth remarking that if A is finite (but k still infinite) then Theorem
1.1.6 and Corollary 1.1.7 remain true, with the same proofs, and in fact GCH
is not needed.

§2. Almost disjoint functions

In this section we shall discuss a refinement of the question considered in
section 1. Rather than seeking families of almost disjoint subsets of an arbi-
trary set, we shall look at families of functions from a fixed set L to a fixed
set K, where |L| =X and |K| = k. We shall in fact from the start identify L with
X and K with k, and so shall consider subfamilies of k., the set of all functions
mapping A into k.

Let F be a subset of . Thinking of the members of F as sets of ordered
pairs, we can define §(F), the degree of disjunction, as in Definition 1.1.1.

So in fact §(F) is the least cardinal n such that [{a < X\: fla)=g(a)}|<n forall f, g
in . For each value of the cardinal 0, we shall seek the largest possible car-
dinality of a family F where F C *k with 5(F) < 0. Clearly we need only
consider the case when 6 <, since otherwise the condition § (%) is no restric-
tion on F .

There is an equivalent formulation of this problem. We make the following
definition.

Definition 1.2.1. A set T is said to be a transversal of the family & if [T N A|=1
foreach 4 in «A.

Given a family «f = {4,;v <A} of X pairwise disjoint sets each of power
K, by identifying each 4, with k, any transversal of & can be identified with
a function in . In this way, a family F with F C * and S5(F) < 0 corre-
sponds to a class of transversals of the family & , any two of which meet in
less than 0 points. Thus the original problem is equivalent to finding the maxi-
mum size of a class 7 of transversals of & with §(7)<0.

Clearly one can always find k pairwise disjoint transversals, so we shall
wish to know for which values of X and 0 is it possible that || > k.
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We shall need to assume the Generalized Continuum Hypothesis almost
throughout this section.
We start with several easy remakrs.

Lemma 1.2.2 (GCH). Suppose either 0 < X\ and k" <\ or else 6 = \ and
k<N If F C M and §(F) <0 then |F| <«k.

Proof. For a contradiction, suppose that under these conditions there is F
with F C M« such that §(F) <6 and |F| = k*. For distinct f, g in F, put
E(f,g)= {a<N\;f(e) =g}, so IE(f, )| <0.Put £=U{E(f, g): {/, &}
€ [F1*},s0 [El < \. If ais in X — E then f(e) # g() for distinct £, g in F,
and so |F| <k, contradicting that |F| = k.

Lemma 1.2.3 (GCH). Let ' < k. If F C M with §(F) < \ then |F| <k*.

Proof. If A <« clearly |F| <k™,so suppose k <\ and consequently A must
be singular. Take cardinals \; where 7<< X" such that k¥ <Ao< A; <Ay
<...<Xand Z(\; 7<) = \. For a contradiction, suppose in fact that

|F| = k™. Since §(F) < A we have a decomposition [F]? = U,y {{f, g}:

| £ N gl <A} At this stage, we shall appeal to the relation k** - (k)2 which
follows from Theorem 2.2.4. This symbol means that whenever the class of
unordered pairs from a set S of power k™" is decomposed into at most k parts
there is H with H € [S]¢" such that all the pairs from H fall in the same part
of the decomposition. In the situation here, this ensures that there is a family
@ with @ € [F]<" such that for some fixed 7 with 7 < X" always |f N gl < A,
forallf, gin Q. Butnow if X = {gI \,":g € @ 1. it follows that K is a
family of k™ functions mapping from A} into k, with §(%) < \,. This is not

Lemma 1.2.4. Let k' = \'. Then there is F with F C , |F| =k~ and S(F)S A\

Proof. There are ordinals v, where 0 < k" and &, where 7 < \" such that

Yo <7y <.o<k=sup{y;0<k'}and§y5<8; <..<A=sup{6:7<N\}
We shall show that no family @ with @ € [*]=* is maximal in the class of
all families of almost disjoint functions in *: as in the proof of Theorem 1.1.4
this will give the result. So suppose @ € [*]=¥, and write g = {gmv<k}
Define g with g € * by choosing g(a) so that if 7 is least for which a <6,
then g(a) €k — {g,(a); v <v;}. Given u with u <k, if o is least such that
u<1v, theng Ng, C {{a,gla):a<5,}and so lg Ngyl <[54+ 1| <A. Thus
g can be added to @ and still gives an almost disjoint family.



Ch. 1.2 Almost disjoint functions 7
The following lemma is a theorem of Erdds, Hajnal and Milner [36].

Lemma 1.2.5. Let k* =\ Then there is F with F C M such that |F| =k and
5(F)<k.

Proof. The plan for the proof is as follows. By thinking of the ordinals less
than k" arranged according to order type, it is clear how to define pairwise
disjoint functions g,, for » with » < k" mapping into k¥, with the domain of
g, all ordinals g with v << k" — simply define g, (a) = c.

For each a with « < k" we have |a| < k, and so we may take a well order-
ing {(¢4,: » < of (a subset of) k of order type @, and use the above construc-
tion on these well orderings to provide pairwise disjoint tail ends of functions
f» i kT =k where v <k*. One has only to arrange the front ends so that any
two of the functions meet in a set of size less than k, and this gives a family
F as required.

Formally, then, we construct functions f;, : k" =k where » < k" by induc-
tion as follows. Let » with v < k™ be given, and suppose that the functions f,
when p < have already been suitably defined. If a > v, put f,,(@) = &4, Then
when u < certainly f,,(a) # fu(@). To define f,,(a) for values of a where
a<v,let {fu:u< v}= {f1: 8 <min(v, )} and choose f (@) in k — {fvﬁ(a)l
o< B}. Then if u <, for some g with 8 <« it follows that f}, = f,,3 and conse-
quently fj, (o) # f, (o) whenever f < a <. Thus [ f, N f,| < Bl <. Then if
F=1{f,r< k"), we have |F| =k " and S§(F) <k as desired.

We can now turn to the problem stated at the beginning of this section; to
find the maximum cardinality of a family F where F C *x with §(F) < 9.
The case § <\ is much easier than when 6 = A, so we dismiss this case first.

Theorem 1.2.6 (GCH). Suppose 6 < \. Let nt be the maximum of the cardi-
nalities of families F where F C M with 5(F)< 0. Then m = k unless A = k",
in which case m = k.

Proof. Suppose F C M with §(F) < 0.

If k <0 then k" <\, and Lemma 1.2.2 shows |F| < k. If k > 0, consider
FProt={fr0%f€ F} and note that since §(F) < 6 the map which sends f
tof1 6" is one-to-one. Now F I 6" is a decomposition of 0" X k,aset of
power k, into sets of size greater than 0 with §( F 0")< 0. So by Corollary
1.1.7, |F 1 0% <k and hence |F| <k.Ifk =0 and k" <A, again Lemma 1.2.2
gives |F| <«k.

Only the case k =0 and A<k remains. Since § <\ we must have \ = k"



