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Foreword

This sixth volume of Specialist Periodical Reports devoted to the chemistry of
alkaloids follows the policies developed so successfully in Volumes 1—5 by my
predecessor as Senior Reporter, Dr. J. E. Saxton. The aim once again is to make the
surveys comprehensive, this time covering the literature published during July
. 1974—June 1975.

Indole and isoquinoline alkaloids continue to play a dominant role. The apor- -
phinoids, comprising proaporphines, aporphines and related dimers, are treated
separately, partly in order to reduce the burden on contributors; aristolactams and
aristolochic acids, which have not been reviewed since 1961, also are discussed in this
chapter. This year the quinolizidine alkaloids, including the sesquiterpenoid Nuphar
bases and the appropriate Lythraceae alkaloids, as well as azaphenalenes of plant
and insect origin are reviewed together. Amaryllidaceae, Erythrina, imidazole,
purine and peptide alkaloids are omitted from this volume, but it is expected that the
chemistry of these groups covering the period 1974—1976 will be surveyed in
Volume 7. ‘

Comments on the presentation of the alkaloid reports are welcome, and reporters
" will appreciate receiving reprints of articles, particularly those published in less
accessible journals. I wish to express my gratitude to the new contributors as well as
to the old hands for the accuracy and prompt dispatch of manuscripts, and to Dr.
Saxton for his indispensable advice.

March 1976 “M.F. GRUNDON
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1

Biosynthesis

BY R. B. HERBERT

1 Introduction

The number of papers appearing on alkaloid biosynthesis continues to be large. In
reviewing this work the practice of referring to previous Reports is continued and, in
order to make this background material more conveniently accessible, these Reports
are listed as references 1—5. Access to work reported before 1969 is most easily
gained through two excellent and comprehensive reviews®” and reference is made to
these where appropriate. The reader is also recommended to consult the alternative
annual survey on alkaloid biosynthesis,® where the approach is different from the one
adopted here.

2 Piperidine, Pyridine, and Pyrrolidine Alkaloids

Piperidine Alkaloids (General).—As part of a study of the role of cadaverine (1) in
the, biosynthesis of piperidine alkaloids samples of (1), stereospecifically labelled
with tritium at C-1, were tested as precursors for N-methylpelletierine (2).° These
samples were prepared by decarboxylation of L-lysine through the action of L-lysine

o J/\k ‘ Ej\/?‘\
.. ~-H
H,N H,N s N

) H,N Hg Me

H:N “co,n

L-Lysine Cadaveﬁm (1) 2
(S-lysine)

- ' R.B. Herbert, in “The Alkaloids’, ed. J. E. Saxton (Specialist Periodical Reports), Ttie Chemical Society,

London, 1971, Vol. 1. )

2 J. Staunton, in “The Alkaloids’, ed. J. E. Saxton (Specialist Periodical Reports), The Chemical Society,
London, 1972, Vol. 2.

3-R.B. Herbert, in ‘The Alkaloids’, ed. J. E. Saxton (Specialist Periodical Reports), The Chemical Society,
London, 1973, Vol. 3.

“ R.B. Herbert, in “The Alkaloids’, ed. J. E. Saxton (Specialist Periodical Reports), The Chemical Society,
London, 1974, Vol. 4.

* R.B. Herbert, in ‘The Alkaloids’, ed. J. E. Saxton (Specialist Periodical Reports), The Chemical Society,
Londons, 1975, Vol. 5. . )

¢ ‘Biosynthese der Alkaloide’, ed. K. Mothes and H. R. Schiitte, VEB Deutscher Verlag der Wissenschaf-
ten, Berlin, 1969.

7 L D. Spenser, in ‘Comprehensive Biochemistry’, ed. M. Florkin and E. H. Stotz, Elsevier, Amsterdam,
1968, Vol. 20, p. 231. :

8 E. Leete, in ‘éiolyntlmis’, ed. T. A. Geissman (Specialist Periodical Reports), The Chemical Society,
London, 1972—1975, Vols. 1—3.

® E. Leistner and 1. D. Spenser, J. Amer. Chem. Soc., 1973, 95, 4715; R. B. Herbert, in ref. 5, p. 5.

1



2 ‘ Biasylnthesis

decarboxylase (isolated from Bac:llus cadaveris). Although this reaction was known
to proceed stereospecifically'® it was not known at the time if the result was retention
or inversion of oonﬁguratxon It has recently been shown,'' however, that the
consequence of the enzymic decarboxylation is retention of configuration, and so
{1A-*H]cadaverine® is (1R)-[1-*H]cadaverine. It follows then, from the earlier
' conclnsion9 about cadaverine incorporation into N-methylpelletierine (2), that it is
the 1-pro-R proton from cadaverine (1) which is retained at C-2 of (2) and the
1-pro-S hydrogen atom which is lost.

Anatabine and Anabasine.—Although the biosynthetic pathway to anabasine (3)
has been delineated in detail,'>** little evidence had been obtained until recently on
the way in which anatabine (8) is formed: [2-'*C]lysine and [2-'*C]-4-hydroxylysine
were found not to label anatabine'* and results with **CO, indicated that anabasine
was not a precursor of anatabine.'’

In a recent study,® [2-'*Cllysine was fed to Nicotiana glutinosa, and although it
was specifically incorporated into anabasine (3) in the expected manner it did not
label the anatabine (8), thus according with the previous result.'

Nicotinic acid (6) is well established as a precursor of the pyridine ring of
nicotine'*!” and is also a precursor of this moiety in anabasine.'>'® [6-'*C]Nicotinic
acid, as might therefore be expected, gave radioactive anatabine, but surprisingly the
activity was divided equally between C-6-and C-6' ([carboxy-'*Clnicotinic acid failed
to label any of the alkaloids significantly).'® Tt follows that nicotinic acid (6) is the
source for both rings of anatabine and the equal distribution of label indicates that
the two units from which the alkaloid is formed are closely related, if not identical. ‘

The manner in which the two nicotinic acid units may be joined (Scheme 1) is
suggested'® by analogy with the probable intermediacy of a dihydronicotinic acid in
nicotine biosynthesis.'” It is further suggested that anatalline (4) and nicotelline (5)
are trimers of the dihydro-derivative (7).'¢

The anabasine obtained after feeding [6-'“Clnicotinic acid was found to be
labelled almost exclusively in the pyridine ring, so no significant conversion of
anatabine (8) into anabasine (3) occurs.'® :

In accord with previous conclusions'?'? about the relationship between lysine and
anabasine (3), lysine has been found to be a precursor for-(3) in Anabasis aphylla
along a pathway which does not involve symmetrical intermediates.'® Aspartic acid
was found to serve as a precursor for both rings of anabasine?® whilst lysine was
incorporated into lupinine,'® again in accord with previous results.

10 S, Mandeles, R. Koppelman, and M. E. Hanke, J. Biol. Chem., 1954, 209,"327.

1 E. Leistner and 1. D. Spenser, J.C.S. Chem. Comm., 1975, 378.

12 R. B. Herbert, in ref. 5, p. 5; ref. 4, p. 4. '

13 (a) D. Gross, in ref. 6, p. 234; (b) I. D. Spenser, in ref. 7, p. 253.

14 T. Kisaki, S. Mizusaki, and E. Tamaki, Phytochemistry, 1968, 7, 323.

3 W. L. Alworth and H. Rapoport, Arch. Biochem. Biophys., 1965, 112, 45.

16 E. Leete, J.C.S. Chem. Comm., 1975, 9.

17 R. B. Herbert in ref. 4, p. 7 and refs. cited.

'8 M. L. Solt, R. F. Dawson, and D. R. Christman, Plant Physiol., 1960, 38, 887.

19 %?;.&.)ovkova, E. I. Nurimov, and G. S. Il'in, Biokhimiya, 1974, 39, 388 (Chem. Abs., 1974, 81,
0 r“zzskam E. I. Nurimov, and G. S. Il'in, Biokhimiya, 1974, 39, 523 (Chem. Abs., 1974, 81,
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Scheme 1

Lobeline.—The results of feeding experiments with DL-[2-'*C]lysine and DL-[2-
4Clphenylalanine in Lobelia inflata have shown that these amino-acids are both
specific precursors for the alkaloid lobeline (13).*"** In furiher experiments,
DL-[3-'*C]phenylalanine, [3-'*C]cinnamic acid, and [3-'“C]-3-hydroxy-3-
phenylpropionic acid [as (9)] have been found to be specific precursors for lobeline
(13).2> These results are consistent with the anticipated pathway** to lobeline
illustrated in Scheme 2, with benzoylacetic acid (10) as the intermediate which
couples with A'-piperideine to give the intermediate (11). The probability of 3-
hydroxy-3-phenylpropionic acid (9) being an intermediate in lobeline biosynthesis is
increased by the isolation of this acid from L. inflata.*®

In contrast to the biosynthesis of many other piperidine alkaloids, the incor-
poration of [2-'*C]lysine into lobeline (13) was found to be symmetrical, i.e. C-2 and
C-6 were equally labelled. Symmetrization of the label could occur on formation of
lobelanine (12), a known late precursor,?>?¢ or at a possible earlier intermediate,

21 M. F. Keogh and D. G. O’Donovan, J. Chem. Soc. (C), 1970, 2470.
22 R. B. Herbert, in ref. 3, p. 27.

23 D. G. O’'Donovan, D. J. Long, E. Forde, and P. Geary, J.C.S. Perkin I, 1975, 415.

24 (. M. H. Zenk, in ‘Biosynthesis of Aromatic Compounds’, Prowedmgs of the 2nd meeting of FE B.S.,
ed. G. Billek, Pergamon Press, Oxford, Vol. 3, 1966, p. 45; M. H. Zenk, in ‘Pharmacognosy and
Phytochemistry’, ed. H. Wagner and L. Hérhammer, Springer-Verlag, Berlm. 1971, p. 314; R. N. Gupta
and 1. D. Spenser, Canad. J. Chem., 1967, 48, 1275.

25 H. Wieland, W. Koschara, E. Dane, J. Renz, W. Schwarze, and W. Linde, Annalen, 1939, 540, 103.

26 D. G. O’'Donovan and T. Forde, J. Chem. Soc. (C), 1971, 2889.
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OH o}

3 .

HO,C >/\ , HO,C A, Hozc\/kph , HO,C\/U\Ph
SN ) (10)

Phenylalanine Cinnamic acid
)

N
A'-piperideine

IO ILB YOS I
Ph ISNTE Ph Ph N Ph N Ph
Me Me H

(13) (12) (11)
Scheme 2

cadaverine (1). Cadaverine was found, however, to be a much less efficient precursor
for lobeline than lysine or A'-piperideine, which argues strongly that it is not an
obligatory intermediate in lobeline biosynthesis (cf. the discussion on piperidine
alkaloid biosynthesis in ref. 12) and thus symmetrization of lysine abel occurs via
lobelanine (12).

The biosynthesis of Lobelia alkaloids with C, units at C-2 and C-6 can be
accounted for in terms of the pathway shown in Scheme 3,? in which it is envisaged

e Sy OW

(14 (15)

N
(o} 0
\111
hr}e Me
l (16)
\)(‘)\/(j\/?\/
: N
Me
(4]
Scheme 3

that acetate-derived 3-oxohexanoic acid (14) condenses with A'-piperideine to
afford, after methylation, the keto-amine (15) which is oxidized and condensed with
a further molecule of 3-oxohexanoic acid (14). Truncation of the (16) formed affords
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the alkaloid (17). Evidence for the validity of this pathway has been adduced from
the results of feeding [2-'*Cllysine and [1-'*Clacetate.* The former precursor
provides the piperidine ring of (17) as expected and acetate the side chains, with one -
half of the activity on the carbonyl groups as required by the hypothesis.
Santiaguine.—The origin of the curious a-truxillic acid (18) moiety of santiaguine
~(21), an alkaloid of Adenocarpus species, has been shown to be cinnamic acid. This
moiety arises, the available evidence has suggested, during the biosynthesis of
santiaguine as a result of the dimerization of adenocarpine (20).>” An alternative
route to santiaguine, which involves the dimerization of cinnamic acid, followed by
condensation of the a-truxillic acid formed with tetrahydroanabasine (19), had not
been explored, however. Recent results®® demonstrate that a-truxillic acid (18)
exists free in Adenocarpus foliosus, is specifically latzlled by cinnamic acid, and is
itself specifically incorporated into santiaguine (21). Thus two distinct pathways to
santiaguine may operate (Scheme 4) but it appears, from the relative incorporation
efficiencies, that the route via adenocarpine (20) is, at least, the major one.

Ph
Py CO,H
N\ - .
v o HO,C

Ph

Cinnamic acid (18)

1;{ Ph N
(o)

’ N Ph

|
N

TZ

1

Scheme 4

a-Truxillic acid (18) can be formed photochemically in vitro, from cinnamic acid,?
but it seems that such a route is not operative in vivo, for no significant difference in
the incorporation of labelled adenocarpine (20) into santiaguine (21) could be
observed with plants grown in light or darkness.?®
27 D. G. O’'Donovan and P. B. Creedon, J. Chem. Soc. (C), 1971, 1604; R. B. Herbert in ref. 3, p. 27. '
8 D, G. O’Donovan and P. B. Creedon, J.C.S. Perkin I, 1974, 2524.

29 H, I. Bernstein and W. C. Quimby, J. Amer. Chem. Soc., 1943, 68, 1845; E. H. White and H. C.
Dunathan, ibid., 1956, 78, 6055.
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The origins of the tetrahydroanabasine (19) moieties of santiaguine have been
examined in feeding experiments with DL-[2-'“C]- and DL-[6-"*C]-lysine. Tracer
was incorporated specifically and unsymmetrically into each of the heterocyclic rings
(Scheme 5). Labelled A'-piperideine (22) was incorporated in like manner and is
thus a likely intermediate in the formation of each piperidine ring (Scheme 5). These
results are in accord with the carefully delineated pattern of piperidine alkaloid

3

) Scheme 5

biosynthesis.”'>'**® Application of the model developed® to explain the incor-
poration of lysine and cadaverine into these alkaloids allows one to include
cadaverine as a precursor for santiaguine, as the tracer results suggest.’’ [The
generation of the tetrahydroanabasine skeleton of (21) from lysine makes a notable
contrast with the formation of anatabine (8) from nicotinic acid; see above].

The above experiments have thrown up a point of practical interest and possible
application elsewhere. When radioactive A'-piperideine was fed to A. foliosus
followed by labelled cinnamic acid, the incorporation of the latter was 10 times as
high as previously found. This was tentatively attributed to stimulation of alkaloid
biosynthesis by the presence of both precursors necessary for alkaloid synthesis.?®

Quinolizidine Alkaloids.—Previous results demonstrate that the quinolizidine
skeleton in its entirety derives from lysine.>* Further research has indicated that
lysine is a precursor of all the alkaloids of this type in five species of Leguminosae.*
From the levels of activity observed in the individual alkaloids it was concluded that
saturated alkaloids are precursors for those with a pyridone ring. This was supported
by the observation® that label from radioactive sparteine (24) and lupanine (25)
appeared in more highly oxidized alkaloids. (This compares with a similar situation
in the biosynthesis of matrine-type alkaloids.>*) A metabolic grid for the biosyn-
thesis of quinolizidine alkaloids from lysine was proposed,®® based on these results,

30 R. B. Herbert, in ref. 1, p. 4; ref. 3, p. 25; ref. 4, p. 1; J. Staunton, in ref. 2, p. 20 and refs. cited.

3t H. R. Schiitte, K. L. Kelling, D. Knofel, and K. Mothes, Phytochemistzy, 1964, 3, 249.

32 I D. Spenser, in ref. 7, p. 262; H. R. Schiitte, in ref. 6, p. 324.

33 E. K. Nowacki and G. R. Waller, Phytochemistry, 1975, 14, 155.

34 E. K. Nowacki and G. R. Waller, Phytochemistry, 1975, 14, 161.

35 A. A. Takanaev, Khim. Rast. Veshchetv., 1972, 31 (Chem. Abs., 1973, 79, 765).
3 E. K. Nowacki and G. R. Waller, Phytochemistry, 1975, 14, 165.
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other more convincing evidence,’>*’** and the taxonomical distribution of
quinolizidine alkaloids.

(249 (25

In young Lupinus nanus plants added cadaverine but not putrescine or hex-
amethylenediamine lowered the incorporation of lysine into thermopsine (26). (In
flowering plants the difference between cadaverine and the other two diamines was
less marked.*®) These results provide -further evidence for the intermediacy of
cadaverine in quinolizidine biosynthesis.?*%°

(26)

N-Methylconiine.—Feeding experiments with L-[Me-'*CJmethionine in Conium
maculatum varieties have established that the methyl group of methionine serves as
the source of the N-methyl group of methylconiine (27).*° This adds further to the
picture of coniine biosynthesis*' and provides an additional example of transmethy-
lation in plants. In further experiments,“? an enzyme was isolated from C. maculatum
that was capable of catalysing the transfer of a methyl group from S-
adenosylmethionine to coniine (28), with the formation of N-methylconiine (27).
The enzyme was partially purified and characterized in part.

oV

@n (28)

Ricinine.—Quinolinic acid (29) is known to be a precursor of ricinine (32).*>** The
results of other studies have indicated that the pyridine nucleotide cycle (Scheme 6)

37 Y. D. Cho and R. O. Martin, Canad. J. Biochem., 1971, 49, 971.

38 R. B. Herbert, in ref. 3, p. 30.

3® B. A. Abdusalamov, A. A. Takanaev, Kh. A. Aslanov, and A. S. Sadykov, Biochemistry (U.S.S.R.),
1971, 36, 239.

40 M. F. Roberts, Phytochemistry, 1974, 13, 1841.

41 E. Leete and J. O. Olson, J. Amer. Chem. Soc., 1972, 94, 5472; E. Leete, ibid., 1964, 86, 2509; M. F.
Roberts, Phytochemistry, 1971, 10, 3057; R. B. Herbert, in ref. 4, p. 10; ref. 1, p. 1; J. Staunton, in ref. 2,
p. 26.

42 M. F. Roberts, Phytochemistry, 1974, 13, 1847.

43 K. S. Yang and G. R. Waller, Phytochemistry, 1965, 4, 881.

44 L. A. Hadwiger, S. E. Badiei, G. R. Waller, and R. K. Gholson, Biochem. Biophys. Res. Comm., 1963,
13, 466.



