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Introduction

Welcome to SPIE’s third annual conference on the Applications and Science of
Computational Intelligence. This year’s conference covers theory, algorithms, hard-
ware, and many other unique applications of computational intelligence.

We have provided two panel sessions on Thursday to pique your interest in other
methods of computing and in the challenges we all face as we move forward in
_ implementing our technology in the products of tomorrow.

| wish to take this opportunity to thank my co-chairs, Dr. Paul Keller and Dr. David
Fogel for their support, as well as the program committee, each of the participants at
the conference, and the staff at SPIE.

Please take the time to confer with the authors and with the program committee about
your views on the conference.

| look forward to seeing you at the conference.

Kevin L. Priddy

xi
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Topological-based Capability Measures of Artificial Neural
Network Architectures

Mark E. Oxley? and Martha Alvey Carter?

%Department of Mathematics and Statistics
Air Force Institute of Technology
2950 P Street
Wright-Patterson AFB, OH 45433-7765

National Air Intelligence Center
4115 Hebble Creek Rd.
Wright-Patterson AFB, OH 45433-5622

ABSTRACT

Current measures of an artificial neural network (ANN) capability are based on the V-C dimension and its
variations. These measures may be underestimating the actual ANN’s capabilities and hence overestimating
the required number of examples for learning. This is caused by relying on a single invariant description
of the problem set, which, in this case is cardinality, and requiring worst case geometric arrangements and
colorings.

A capability measure allows aligning the measure with desired characteristics of the problem sets. The
mathematical framework has been established in which to express other desired invariant descriptors of a
capability measure. New invariants are defined on the problem space that yield new capability measures of
ANNSs that are based on topological properties. A specific example of an invariant is given which is based
on topological properties of the problem set and yields a new measure of ANN architecture.

Keywords: Artificial neural network architecture, Capability measure, Invariants

1. INTRODUCTION

Let A be an ANN architecture. We want to measure the capability of A. Typically, the capability is
defined as the ability of A to successfully classify data, though there are other capabilities one might want
to measure. We want to assign a positive real number to the architecture A that corresponds to the measure
of A, pu(A). Given another architecture B, we would like to know if B is better, worse or the same in its
capability compared to A. We will make this comparison based upon the measures of the architectures,
that is, A is more capable than B if u(A) > p(B). The purpose of this paper is to determine a mapping
1 so that we can compare architectures.

2. BACKGROUND
2.1. Measure Theory

A measure is a set function, that is, its input is a set and its output is a positive real number. There are
generalizations of measures based upon the type of output. For example, if the output is also negative
the measure is called a signed measure. If the output is a complex number then the measure is called a
complex measure. Sometimes there are several measures of interest so one may concatenate them into a

E-mail: Mark.Oxley@afit.af.mil, mac05@naic.wpafb.af.mil

In Applications and Science of Computational Intelligence IlI, Kevin L. Priddy, Paul E. Keller,
David B. Fogel, Editors, Proceedings of SPIE Vol. 4055 (2000) e 0277-786X/00/$15.00




vector. This yields a vector measure. The fundamental characteristics of a measure are: (1) their output
is a scalar that has an ordering (partial or total), and (2) there is one output that corresponds to the input
(that is, a function). Recall that the real numbers are totally ordered.

Definition 1. (Measure)(See Halmos.*) A measure m is a real-valued function that is defined on a
o-algebra of sets S, that is, m : S — R, that satisfies the properties:

1. m(@) =0 (0 is the empty set);

2. m(S)>0forall SeS;

3. m(U Sr) =3 m(S,) for all countable disjoint collection {S,} C S.
n n

Recall the definition of a o-algebra is a Boolean algebra with the added property that for each countable
collection {S,} C S, then
USn€s.
n

A Boolean algebra of sets is a collection of subsets of some universe set. Let ) denote a collection of
subsets of R%. An example of ) is the power set P(R?) which is a o-algebra. Other examples of interest
are topological spaces. h
Definition 2. (Topological Spaces)(See Royden.®) A topological space (U,7T) is a non-empty set U (the
universe set ) of objects together with a family of subsets 7" (the topology) (We say the set O € 7 is an
open set.) possessing the following properties:

1.UET and P e T ;
2. for every 01,0, € T then O; N0z € T (finite intersection);

3. for every subcollection {O4} C 7 then UsOq € T (infinite unions).

If a o-algebra also satisfies property (3), then the o-algebra is also a topological space.

Suppose A has d inputs and 1 output, then A corresponds to a family of functions F. Assume the d
inputs are real-valued and the single output is also real-valued. Thus, for an instantiation of a weight vector
w € W (W is the set of possible weight vectors for the architecture), there is a function that corresponds
to that fixed network (not necessarily one-to-one; see Carter.!) Therefore, we can identify the architecture
A with the family of functions

. F={fy:R\oR:weW}

For each f € F we define the set s; = {z € R?: f(z) > 0}. The family of these sets is denoted by
S={s; e P(RY: f € F}.

Hence, we can identify the family S with architecture A. That is, there exists a mapping ¢ that maps A

to S, s0 ¢(A) = S. ’

Let A denote a collection of ANN architectures with d inputs and 1 output (both real-valued), so A € A
is a specific architecture. Let S denote the corresponding collection of families of sets, so S € S. From our
previous discussion, there exists a mapping ¢ that maps A to S, that is, ¢(4) = S. So, the measure of A4,



denoted by p(A), will be defined in terms of a measure of S. That is, we seek a measure m, defined on S,
so that m(S) is a positive real number. We define 1 = m o ¢ since

[m o ¢](A4) = m($(A)) = m(S)

then

1(A) = m($(A)).
A word of warning is appropriate now. Given A we form S, but S may not be a o-algebra. This motivates
the following theorems.

Theorem 1. Let S be a collection of sets. There exists a o-algebra ¥ that contains S.
Proof. Let S be the generator of a og-algebra, say ¥, then ¥ contains S.

Definition 3. Let S be a collection of sets. Let £(S) denote the set of o-algebras that contains S. That
is,
2(8) = {: T is a o-algebra, ¥ D S}.

Theorem 2. Let S be a collection of sets. There exists a srﬁalle_st o-algebra that contains S, denoted
o(S). That is, if £; € £(S) and £; C o(S), then, in fact, X; = o(S).

Proof. (£(S),C) forms a partially ordered set. Applying Zorn’s Lemma® gives the results.

The capability of the family S is based on its ability to implement dichotomies of data in R%. We
review this to establish some notation.

2.2. Classification Problem

Let X C R? be a non-empty set. The dichotomy of X is the partition of its elements into two disjoint
subsets Xtand X, such that XT UX~ = X and Xt N X~ = 0. A dichotomy is denoted by the ordered
pair (X*, X ™) and is also referred to as a signed set. A signedset X = (X*, X ™) is said to be implemented
by a function f € F if :

f()>0 forall zeX*
flr)<0 forall zeX™.

Tt will be convenient to say that the family F' implements the signed set X if there exists some f € F' such
that f implements that signed set X. The (two-class) classification problem is posed as: given a signed,
set X find a function f € F which implements it. Typically, the set X is finite, that is, the cardinality
of X, denoted by card(X), is a (finite) positive integer. Because of the relationship between the family F'
and the family S, we will say the family S implements the signed set X if there exists a set s € S such
that )

s Xt =X%- and FNXT=X"

where 3 denotes the set complement of s with respect to R?. The equivalent statements are,

SNXT=0 and sNnX =0.

The measure of S is based on some quantifier Q acting on the collection of signed sets that S can
implement. We are interested in finite data, so let X denote the collection of finite signed sets in RY, that
is,

X={X=(X"X"):card(X") +card(X~) < o0}.




For each set s € S define the family of finite sets that s can implement, to be
i(s) = {X € X : s implements X}.
Define the union over all these sets to be

I(S) =J i(s) = {X € X : s implements X for some s € S}.
s€S

Now define the measure m to be in terms of @ acting on Z(S) by
m(S) = Q(Z(S5))-

2.3. Examples

We give some examples of quantifiers Q. Most of the interesting cases involve a set function g acting on
sets in X, such that ¢(X) > 0 for each X € X. Note that ¢ is almost a measure (called a semi-measure),
but may not satisfy the property (3) in the definition of a measure. Define Q in terms of g by

Q(C) =sup{g(X) : X € C}

for a subcollection of signed sets C. Once we specific ¢ and C, then the quantifier Q follows, and thus, the
measure 7.

Example 1. Let ¢1(X) = ca‘rd(X) = card(X ) + card(X ™) = card(X) and C, = Z(S), then m; is
my(S) = Q1(Z(S)) = sup{card(X) : X € Z(S5)}.

This m is related to the V-C dimension, but not the V-C dimension.
Example 2. Let g2(X) = card(X) and C; = {X €Z(S) : S implements every Y € P(X)} then my is

ma(S) = Q2(Cz) = sup{card(X) : X € Cp}.

Then m is the V-C dimension.?10

Example 3. Let ¢3(X) = GC(X), the geometric complexity of the signed set X (See Carter! and Carter
and Oxley.3 ) and let C3 = Z(S), then mg3 is

m3(S) = Q3(Z(S)) = sup{GC(X) : X € Z(S)}.

This is the Ox-Cart dimension.!+3
Other choices for q exist. The one that several researchers have sought is the following.
Example 4. Let g4(X) be given by

q4(X) = card({hyperlanes that separates X}).

But, this mapping is difficult to write out. Take C4 = Z(.S) then it leads to the measure
my(S) = Q4(Z(S)) = sup{qa(X) : X € Z(5)}.

The discovery of other measures of this form relies on the mapping q. We investigate this further. There
is another property that g should satisfy and that is an invariant property. We begin with a discussion on
the theory of invariants. :



2.4. Invariants Theory

Because, an ANN capability measure should be about signed sets, what is sought is a set of invariants and
a family of operators that are defined on signed sets. Hence, consider the following definition for a set of
invariants on signed sets, X.

Definition 4. We say the qua.ntiﬁer q is invariant with respect to the family G of opérators (that act on
X) if
q(9(X))=¢(X) foral X € X forallgeG.

The family G usually is a group of operators (where composition is the group’s binary operation.)

2.4.1. Operators defined on signed sets

The generalized framework for determining ANN capabilities will be centered on invariants. The following
operators defined on & will help formalize the invariants desired. Specifically, it is desired that the mappings
that characterize signed sets will be invariant to dilation, translation, or rotation of the signed sets.

Definition 5. Let v € R*. Define D, : P(R?) —» P(R¥) as D, (X) = {yz € R¢:z € X} forall X € P(RY).
Then, the dilation operator defined on signed sets D : X — X’ is defined as D,(X) = (D,(X*), D,(X ™)),
forall X € &.

Definition 6. Let zp € R%. Define Ty, : P(RY) — P(RY) as Ty, (X) = {zo+z € R? : z € X}
for all X € P(R?). Then, the translation operator deﬁned on signed sets Tz, : X — X, is defined as
Tzo(X) = (T (X ), Tio (X)), for all X € X.

Definition 7. Let A € R?"1. Define Ry : P(R?) — P(R?) as R\(X) = {r A(z) € R?: z € X}, for all
X € P(R?) where 7y : R¢ — Rd is a vector rotation operator that can be represented by an orthogonal

matrix multiplication with the angle A = (A, A2,...Aq—1). Then, the rotation operator defined on signed
sets Ry : & — X is defined as Ry(X) = (Rx(X™), Ry(X7)), for all X € X.

Note that both D., and R, are linear operators. However, T, is an affine operator.

Theorem 3. The quantifier, ¢ = card(-), defined on X is invariant with respect to the group

G={Ry:2eR™}U{D,:y R} U{Ty, : zo € R%}.

Proof. We need to prove that card(g(-)) = card(-) for all g € G. Let g = Ty, for some z¢ € R%, and let
X €X , then )
card(¢(X)) = card(Tz,(X))
card(X)

Hence, card(Ty,(-)) = card(-) for all 2o € R?. Similarly, card(R(-)) = card(-) for all A € R4~! and for
all v € R, card(D,(-)) = card(-). Therefore, cardinality is an invariant with respect to G.

2.5. Topological-based Quantifiers

Cardinality is a quantifier that does not consider the geometric arrangement of the signed set. The
geometric complexity! »3 is a quantifier that considers the geometric arrangement, but unfortunately it
is not continuous. To appreciate this statement, recall the distance between two sets X and Y in R? is
defined by
d(X,Y) = i -
(X,¥) =maxmig |z —y]|




