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These Lecture Notes are dedicated to the victims of the brutal attacks
of September 11, 2001, including all who were affected. All of us who
attended the C.I.M.E. course, Americans and non-Americans alike,
were shocked and horrified by what took place.

We all hope for a saner world.




Preface

The C.I.M.E. course on “Multiscale Problems and Methods in Numerical Sim-
ulation” was held in Martina Franca (Italy) from September 9 to 15, 2001.
The purpose of the course was to disseminate a number of new ideas that had
emerged in the previous few years in the field of numerical simulation, bearing
the common denominator of the “multiscale” or “multilevel” paradigm. This
takes various forms, such as: the presence of multiple relevant “scales” in a
physical phenomenon, with their natural mathematical and numerical coun-
terparts; the detection and representation of “structures”, localized in space
or in frequency, in the unknown variables described by a model; the decom-
position of the mathematical or numerical solution of a differential or integral
problem into “details”, which can be organized and accessed in decreasing
order of importance; the iterative solution of large systems of linear algebraic
equations by “multilevel” decompositions of finite-dimensional spaces.

Four world leading experts illustrated the multiscale approach to numer-
ical simulation from different perspectives. Jim Bramble, from Texas A&M
University, described modern multigrid methods for finite element discretiza-
tions, and the efficient multilevel realization of norms in Sobolev scales. Albert
Cohen, from Université Pierre et Marie Curie in Paris, smoothly guided the
audience towards the realm of “Nonlinear Approximation”, which provides a
mathematical ground for state-of-the-art signal and image processing, statis-
tical estimation and adaptive numerical discretizations. Wolfgang Dahmen,
from RWTH in Aachen, described the use of wavelet bases in the design of
computationally optimal algorithms for the numerical treatment of operator
equations. Tom Hughes, from Stanford University, presented a general ap-
proach to derive variational methods capable of representing multiscale phe-
nomena, and detailed the application of the variational multiscale formulation
to Large Eddy Simulation (LES) in fluid-dynamics, using the Fourier basis.

The “senior” lecturers were complemented by four “junior” speakers, who
gave account of supplementary material, detailed examples or applications.
Ken Jansen, from Rensselaer Polytechnic Institute in Troy, discussed vari-
ational multiscale methods for LES using a hierarchical basis and finite el-
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ements. Joe Pasciak, from Texas A&M University, extended the multigrid
and multilevel approach presented by Bramble to the relevant case of sym-
metric indefinite second order elliptic problems. Rob Stevenson, from Utrecht
University, reported on the construction of finite element wavelets on gen-
eral domains and manifolds, i.e., wavelet bases for standard finite element
spaces. Karsten Urban, from RWTH in Aachen, illustrated the construction
of orthogonal and biorthogonal wavelet bases in complex geometries by the
domain decomposition and mapping approach.

Both the senior and the junior lecturers contributed to the scientific suc-
cess of the course, which was attended by 48 participants from 13 different
countries. Not only the speakers presented their own material and perspective
in the most effective manner, but they also made a valuable effort to dynam-
ically establishing cross-references with other lecturers’ topics, leading to a
unitary picture of the course theme.

On Tuesday, September 11, we were about to head for the afternoon ses-
sion, when we were hit by the terrible news coming from New York City.
Incredulity, astonishment, horror, anger, worry (particularly for the families
of our American friends) were the sentiments that alternated in our hearts. No
space for Mathematics was left in our minds. But on the next day, we unan-
imously decided to resume the course with even more determination than
before; we strongly believe, and we wanted to testify, that only rationality
can defeat irrationality, that only the free circulation of ideas and the mu-
tual exchange of experiences, as it occurs in science, can defeat darkness and
terror.

The present volume collects the expanded version of the lecture notes by
Jim Bramble, Albert Cohen and Wolfgang Dahmen. I am grateful to them for
the timely production of such high quality scientific material.

As the scientific director of the course, I wish to thank the former Director
of C.I.M.E., Arrigo Cellina, and the whole Scientific Board of the Centre, for
inviting me to organize the event, and for providing us the nice facilities in
Martina Franca as well as part of the financial support. Special thanks are due
to the Secretary of C.I.M.E., Vincenzo Vespri. Generous funding for the course
was provided by the .N.D.A.M. Groups G.N.C.S. and G.N.A.M.P.A. Support
also came from the Italian Research Project M.U.R.S.T. Cofin 2000 “Calcolo
Scientifico: Modelli e Metodi Numerici Innovativi” and from the European
Union T.M.R. Project “Wavelets in Numerical Simulation”.

The organization and the realization of the school would have been by
far less successful without the superb managing skills and the generous help
of Anita Tabacco. A number of logistic problems were handled and solved by
Stefano Berrone, as usual in the most efficient way. The help of Dino Ricchiuti,
staff member of the Dipartimento di Matematica at the Politecnico di Torino,
is gratefully acknowledged. Finally, I wish to thank Giuseppe Ghibo for his
accurate job of processing the electronic version of the notes.

Torino, February 2003 Claudio Canuto
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Theoretical, Applied and Computational
Aspects of Nonlinear Approximation

Albert Cohen

Laboratoire d’Analyse Numérique, Université Pierre et Marie Curie, Paris
cohen@ann.jussieu. fr

Summary. Nonlinear approximation has recently found computafional applica-
tions such as data compression, statistical estimation or adaptive schemes for partial
differential or integral equations, especially through the development of wavelet-
based methods. The goal of this paper is to provide a short survey of nonlinear
approximation in the perspective of these applications, as well as to stress some
remaining open areas.

1 Introduction

Approximation theory is the branch of mathematics which studies the process
of approximating general functions by simple functions such as polynomials,
finite elements or Fourier series. It plays therefore a central role in the ac-
curacy analysis of numerical methods. Numerous problems of approximation
theory have in common the following general setting: we are given a family
of subspaces (Sy)n>o of a normed space X, and for f € X, we consider the
best approrimation error

on(f):= inf |If - gllx- (1)

Typically, N represents the number of parameters needed to describe an ele-
ment in Sy, and in most cases of interest, o (f) goes to zero as this number
tends to infinity.

For a given f, we can then study the rate of approzimation, i.e., the range
of 7 > 0 for which there exists C' > 0 such that

on(f) <CN™". (2)

Note that in order to study such an asymptotic behaviour, we can use a
sequence of near-best approzimation, i.e., fx € Sy such that

If = fnllx < Con(f), (3)
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with C' > 1 independent of N. Such a sequence always exists even when the
infimum is not attained in (1), and clearly (2) is equivalent to the same esti-
mate with ||f — fn]||x in place of on(f).

Linear approximation deals with the situation when the Sy are linear
subspaces. Classical instances of linear approximation families are the follow-
ing:

1) Polynomial approximation: Sy := IIy, the space of algebraic polynomials
of degree N.

2) Spline approximation with uniform knots: some integers 0 < k < m being
fixed, Sy is the spline space on [0,1], consisting of C* piecewise polynomial
functions of degree m on the intervals [j/N,(j +1)/N], j=0,---,N — 1.

3) Finite element approximation on fixed triangulations: Sy are finite element
spaces associated with triangulations 7n where N is the number of triangles
in Tn. g

4) Linear approximation in a basis: given a basis (ex)r>0 in a Banach space,
SN := Span(eg,- -, en).

In all these instances, NN is typically the dimension of Sy, possibly up to some
multiplicative constant.

Nonlinear approximation addresses in contrast the situation where the
Sn are not linear spaces, but are still typically characterized by O(N) param-
eters. Instances of nonlinear approximation families are the following:

1) Rational approximation: Sy := {g ; D,q € IIN}, the set rational functions
of degree N.

2) Free knot spline approximation: some integers 0 < k < m being fixed,
Sx is the spline space on [0, 1] with N free knots, consisting of C* piecewise
polynomial functions of degree m on intervals [z;,2;41], for all partitions
O=2g<x1--<axy_1 <2y =1.

3) Adaptive finite element approximation: Sy are the union of finite element
spaces V7 of some fixed type associated to all triangulations T of cardinality
less or equal to N.

4) N-term approximation in a basis: given a basis (ex)r>0 in a Banach space,
Sy is the set of all possible combinations ;. zxex with #(E) < N.

Note that these examples are in some sense nonlinear generalizations of the
previous linear examples, since they include each of them as particular subsets.
Also note that in all of these examples (except for the splines with uniform
knots), we have the natural property Sy C Sny1, which expresses that the
approximation is “refined” as N grows.

On a theoretical level, a basic problem, both for linear and nonlinear ap-
proximation can be stated as follows:

Problem 1: Given a nonlinear family (Sy)n>o0, what are the analytic prop-
erties of a function f which ensure a prescribed rate on(f) < CN™" ¢
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By “analytic properties”, we typically have in mind smoothness, since we
know that in many contexts a prescribed rate r can be achieved provided
that f belongs to some smoothness class X, C X . Ideally, one might hope
to identify the mazimal class X, such that the rate 7 is ensured, i.e., have a
sharp result of the type

feX,eon(f)<CN™. 4)

Another basic problem, perhaps on a slightly more applied level, is the effec-
tive construction of near-best approximants.

Problem 2: Given a nonlinear family (Sn)n>o0, find a simple implementable
procedure f — fn € Sy such that ||f — fnllx < Con(f) for all N > 0.

In the case of linear approximation, this question is usually solved if we can
find a sequence of projectors Py : X + Sy such that |IPnllx—x < K with
K independent of N (in this case, simply take fy = Pnf and remark that
If = fnllx < (1 + K)on(f)). It is in general a more difficult problem in the
case of nonlinear method. Since the 1960’s, research in approximation theory
has evolved significantly toward nonlinear methods, in particular solving the
two above problems for various spaces Sy .

More recently, nonlinear approximation became attractive on a more ap-
plied level, as a tool to understand and analyze the performance of adaptive
methods in signal and image processing, statistics and numerical simulation.
This is in part due to the emergence of wavelet bases for which simple N-
term approximations (derived by thresholding the coefficients) yield in some
sense optimal adaptive approximations. In such applications, the problems
that arise are typically the following ones.

Problem 3 (data compression): How can we exploit the reduction of pa-
rameters in the approzimation of f by fn € Sn in the perspective of optimally
encoding f by a small number of bits ¢ This raises the question of a proper
quantization of these parameters.

Problem 4 (statistical estimation): Can we use nonlinear approxima-
tion as a denoising scheme ¢ In this perspective, we need to understand the
interplay between the approzimation process and the presence of noise.

Problem 5 (numerical simulation): How can we compute a proper non-
linear approzimation of a function u which is not gien to us as a data but
as the solution of some problem F(u) =0 ¢ This is in particular the goal of
adaptive refinement strategies in the numerical treatment of PDE’s.

The goal of the present paper is to briefly survey the subject of nonlinear
approximation, with a particular focus on questions 1 to 5, and some emphasis
on wavelet-based methods. We would like to point out that these questions
are also addressed in the survey paper [15] which contains a more substantial
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development on the theoretical aspects. We hope that our notes might be
helpful to the non-expert reader who wants to get a first general and intuitive
vision of the subject, from the point of view of its various applications, before
perhaps going into a more detailed study.

The paper is organized as follows. As a starter, we discuss in §2 a simple ex-
ample, based on piecewise constant functions, which illustrate the differences
between linear and nonlinear approximation, and we discuss a first algorithm
which produces nonlinear piecewise constant approximations. In §3, we show
that such approximations can also be produced by thresholding the coeffi-
cients in the Haar wavelet system. In §4, we give the general results on linear
uniform approximation of finite element or wavelet types. General results on
nonlinear adaptive approximations by wavelet thresholding or adaptive par-
titions are given in §5. Applications to signal compression and estimation are
discussed in §6 and §7. Applications to adaptive numerical simulation are
shortly described in §8. Finally, we conclude in §9 by some remarks and open
problems arising naturally in the multivariate setting.

2 A Simple Example

Let us consider the approximation of functions defined on the unit interval
I = [0,1] by piecewise constant functions. More precisely, given a disjoint
partition of I into N subintervals Iy, ---, Ixy—1 and a function f in L'(I), we
shall approximate f on each Iy by its average as, (f) = |I1| ™! flk f(t)dt. The
resulting approximant can thus be written as

N
fN = Z ar, (f)XIk (5)

k=1

If the Iy are fixed independently of f, then fx is simply the orthogonal pro-
jection of f onto the space of piecewise constant functions on the partition
I, i.e., a linear approximation of f. A natural choice is the uniform partition
I, := [k/N,(k + 1)/N]. With such a choice, let us now consider the error
between f and fy, for example in the L> metric. For this, we shall assume
that f is in C'(1), the space of continuous functions on I. It is then clear that
on each I we have

1f (&) = In@)] = [f(#) = ar ()] < sup [f(E) — f(u)l]. (6)

t,u€ly

We thus have the error estimate

If = fnllLee < sup sup [f(t) — f(u)l. (7)
k tu€ly

This can be converted into an estimate in terms of N, under some additional

smoothness assumptions on f. In particular, if f has a bounded first derivative,

we have sup, ey, [f(t) = f(u)] < [Ix[[l 'l = N7Y|f|| L, and thus
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If = fnllpe < N7 Nzee (8)

Similarly, if f is in the Holder space C* for some a €]0,1], i.e., if for all
x,y € [0,1],
|f(z) = f(y)| < Cle —yl* 9)

we obtain the estimate
If — fnllpe SCNTE (10)

By considering simple examples such as f(z) = z® for 0 < a < 1, one can
easily check.that this rate is actually sharp. In fact it is an easy exercise to
check that a converse result holds : if a function f € C([0,1]) satisfies (10)
for some a €]0,1[ then necessarily f is in C'%, and f’ is in L* in the case
where a = 1. Finally note that we cannot hope for a better rate than N~1:
this reflects the fact that piecewise constant functions are only first order
accurate. .

If we now consider an adaptive partition where the Iy depend on the
function f itself, we enter the topic of nonlinear approzimation. In order to
understand the potential gain in switching from uniform to adaptive par-
titions, let us consider a function f such that f’ is integrable, i.e., f is in
the space W1, Since we have sup, e, |f(t) — fu)] < fIk |f/(t)|dt, we see
that a natural choice of the Ix can be made by equalizing the quantities
‘fIk: |f'(t)|dt = N~1 fol |f/(t)|dt, so that, in view of the basic estimate (7), we
obtain the error estimate

If = Fnlloe < N7HI Nz (11)

In comparison with the uniform/linear situation, we thus have obtained the
same rate as in (8) for a larger class of functions, since f’ is not assumed to
be bounded but only integrable. On a slightly different angle, the nonlinear
approximation rate might be significantly better than the linear rate for a
fixed function f. For instance, the function f(z) = z%, 0 < « < 1, has the
linear rate N~ and the nonlinear rate N~ since f'(z) = az®~'isin LY(I).
Similarly to the linear case, it can be checked that a converse result holds : if
f € C([0,1]) is such that

on(f) <CN7Y, (12)

where on(f) is the L> error of best approximation by adaptive piecewise
constant functions on N intervals, then f is necessarily in whl,

The above construction of an adaptive partition based on balancing the
L' norm of f’ is somehow theoretical, in the sense that it pre-assumes a
certain amount of smoothness for f. A more realistic adaptive approximation
algorithm should also operate on functions which are not in W', We shall
describe two natural algorithms for building an adaptive partition. The first
algorithm is sometimes known as adaptive splitting and was studied e.g. in [17].
In this algorithm, the partition is determined by a prescribed tolerance € > 0




6 Albert Cohen

which represents the accuracy that one wishes to achieve. Given a partition of
[0,1], and any interval Ij of this partition, we split I; into two sub-intervals
of equal size if || f — ar, (f)||Le(1,) > € or leave it as such otherwise. Starting
this procedure on the single I = [0, 1] and using a fixed tolerance £ > 0 at
each step, we end with an adaptive partition (Iy,---,Iy) with N(g) and a
corresponding piecewise constant approximation fy with N = N(e) pieces
such that ||f — fn| L~ < e. Note that we now have the restriction that the Iy
are dyadic intervals, i.e., intervals of the type 277 [n,n + 1].

We now want to understand how the adaptive splitting algorithm behaves
in comparison to the optimal partition. In particular, do we also have that
|f — fnllLe < CN~! when f’ € L' 7 The answer to this question turns out
to be negative, but a slight strengthening of the smoothness assumption will
be sufficient to ensure this convergence rate : we shall instead assume that
the maximal function of f’ is in L'. We recall that the maximal function of a
locally integrable function g is defined by :

Mg(x) := sup [vol(B(x,r)]‘l/ lg(t)|dt. (13)
r>0 B(z,r)

It is known that Mg € LP if and only if g € LP for 1 < p < oo and that
Mg € L' if and only if g € LlogL, i.e., [ |g| + [|glog|g|| < oc. Therefore,
the assumption that M f is integrable is only slightly stronger than f € W1,
If (I1,--+,In) is the final partition, consider for each k the interval .Jj
which is the parent of I, in the splitting process, i.e., such that I C J; and

|Ji| = 2|Ik|. We therefore have

e<If —anDle= < [ 170t (14)
Jk
For all z € Iy, the ball B(z,2|I}|) contains Jj and it follows therefore that
Mf'(z) > [Vol(B(IﬂlIkl)]_l/ |f(®)ldt > [411]] e, (15)
B(z,2|Ix|)
which implies in turn
Mf'(t)dt > e/4. (16)
Iy,

If M [’ is integrable, this yields the estimate

N(e) < 4e7! /1 M f'(t)dt. (17)
0

It follows that
If = fnlle <CNT! (18)

with C' = 4 fol M f’. Note that in this case this is only a sufficient condition
for the rate N~! (a simple smoothness condition which characterizes this rate
is still unknown).
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3 The Haar System and Thresholding

The second algorithm is based on thresholding the decomposition of f in
the simplest wavelet basis, namely the Haar system. The decomposition of a
function f defined on [0, 1] into the Haar system is illustrated on Figure 1. The
first component in this decomposition is the average of f, i.e., the projection
onto the constant function ¢ = X[o,1], i-€-,

Pof = (f,p)e. (19)
The approximation is then recursively refined into

29 -1

Pif =) {f: 056005k (20)
k=0
where @jr = 21/2p(279 - —k), i.e., averages of f on the intervals I, =

279k, 279(k+1)[, k=0,---, 27 — 1. Clearly P, f is the L?-orthogonal projec-
tion of f onto the space V; of piecewise constant functions on the intervals
Ijk, k =0,---,2/ — 1. The orthogonal complement Q;f = Pjy1f — Pif is
spanned by the basis functions

Wi =222 - —k), k=0,---,2 -1, (21)

where 1 is 1 on [0,1/2[, —=1 on [1/2,1[ and 0 elsewhere. By letting j go to
+00, we therefore obtain the expansion of f into an orthonormal system of
L([0,1])

27 -1
F= e+ 3 S (fsatin =D datx. (22)
j>0 k=0 A

Here we use the notation ¥ and dy = (f,%¥x) in order to concatenate the
scale and space parameters j and k into one index A = (J, k), which varies
in a suitable set V, and to include the very first function ¢ into the same
notation. We shall keep track of the scale by using the notation

Al =7 (23)

whenever the basis function 1, has resolution 279, This simple example is
known as the Haar system since its introduction by Haar in 1909. Its main
limitation is that it is based on piecewise constant functions which are dis-
continuous and only allow for approximation of low order accuracy. We shall
remedy to this defect by using smoother wavelet bases in the next sections.

We can use wavelets in a rather trivial way to build linear approximations
of a function f since the projections of f onto V; are given by

Pif= 3> dx (24)

[Al<i A




