Introduction to
Data Structures
with Pascal

Thomas L. Naps
Bhagat Singh

Introduction to
Data Structures
with Pascal

Thomas L. Naps
Lawrence University

Bhagat Singh
University of Wisconsin Center System

\WEST PUBLISHING COMPANY
St. Paul New York San Francisco Los Angeles

Copyediting: Martha S. Knutson

Design: Lucy Lesiak

Typesetting: Rolin Graphics

Cover Design: Paul Kemp

Cover Photograph: Floyd Rollefstad, Laser Fantasy Productions

COPYRIGHT ©1986 By WEST PUBLISHING COMPANY
50 West Kellogg Boulevard
P.O. Box 64526
St. Paul, MN 55164-1003

All rights reserved

Printed in the United States of America

Library of Congress Cataloging-in-Publication Data

Naps, Thomas L.
Introduction to data structures with PASCAL.

Includes index.
1. PASCAL (Computer program language] 2. Data

structures (Computer science) |. Singh, Bhagat,
1940- . L Title.
QA76.73.P2N37 1986 005.7'3 85-22582

ISBN 0-314-93207-0

Introduction to
Data Structures
with Pascal

To

Joyce and Rosemary

Preface

With the rapid evolution of computer science, the study of data struc-
tures has found its way into the undergraduate curriculum as early as
the sophomore year. Moreover, an increasingly diverse collection of
students is studying this subject. Once solely the domain of hard-core
computer science majors, data structures is now taken by business,
economics, engineering, and mathematics majors who wish to en-
hance their chosen discipline with a strong background in computer
science. Texts that emphasize a highly rigorous mathematical ap-
proach to data structures no longer are appropriate for this growing
number of heterogeneous students. In Introduction to Data Struc-
tures with Pascal, we attempt to satisfy the needs of this new group of
students by providing a text that emphasizes implementing and evalu-
ating data structures in practical situations and avoids relying on an
overly theoretical approach. The text is designed for anyone who has
had a solid programming background in Pascal. Such a background
should include a detailed grasp of procedures, functions, parameter
passing, and arrays. To a lesser extent, some prior work with records
and files is desirable although these topics are developed as needed in
the text itself.

Introduction to Data Structures with Pascal represents an alterna-
tive to our earlier pseudocode-based Introduction to Data Structures.
The development of such an alternative was motivated by a near 50-
50 split which we found among the reviewers of our efforts. Though
these reviewers were essentially in agreement as to topics covered and
the order in which they were presented, there was a pronounced and
irresolvable split between those who believed in a pseudocode ap-
proach and those who felt that seeing algorithms in the familiar Pascal
language would make concepts easier for students. It is to this latter
group that this version of the text is addressed.

XV

Xvi PREFACE

In addition to providing a Pascal-specific orientation, we have
also expanded our coverage of important software engineering con-
cepts to help students as they begin using data structures in larger pro-
gramming projects. Sections on Program Design Considerations
appear in each chapter. Some of these sections (notably those in Chap-
ter 3, Chapter 7, and Chapter 11) deal with the development of com-
plete large-scale programs which use the data structures studied up to
that point. Others touch upon design issues which are then further ex-
panded in the exercises and programming problems.

Three new appendices have also been added for those students of
Pascal who may need a bit more general experience as well as a thor-
ough treatment of data structures. Appendix C presents a description
of those testing, verification, and debugging strategies that are so es-
sential for students developing large-scale programs. Appendix B on
formal analysis of algorithms presents the basics of this topic. We
have chosen to treat this issue in a separate appendix because we want
the book to retain its intuitive, implementation-oriented approach.
Appendix A discusses how various versions of Pascal implement di-
rect access files—a topic which we consider essential despite its ab-
sence from the Pascal standard. A “real world” proof of the essential
nature of this topic is that virtually all widely used implementations
of Pascal have included procedures for direct access files in their
repetoires. Appropriate references to all of these appendices are made
throughout the text, making it easy for the student to merge this addi-
tional material with specific data structures topics. Depending upon
the curriculum at your institution, this increased emphasis upon soft-
ware engineering issues and the coverage of advanced topics in a
Pascal-specific fashion may in fact make the text suitable for an ad-
vanced course in programming, as described in the C.S. II Course
Guidelines recommended by the recent ACM Curriculum Task Force
for C.S. I1.

Further changes from the pseudocode version are less oriented to-
ward Pascal but instead induced by feedback we have been receiving
from the field. Exercises have been added in each chapter. The the-
matic Wing-and-a-Prayer Airlines problems proved popular, so we
have included two other thematic problem lines running throughout
the text—the Fly-By-Night Credit Company and the Bay Area Brawl-
ers Professional Football Club. In Chapter 5, we have expanded our
discussion of recursion, offering a more gradual introduction to this
difficult topic. Discussions of algorithm efficiency in the body of the
text itself have been isolated in separate sections for greater emphasis
and easier reference. Finally, new “In the World of Applications”
boxes have been developed for Chapters 4, 7, and 9 to replace old ones
which some readers felt lacked a “real world” flavor.

However, despite these changes, the two major goals of this text
remain unchanged from the pseudocode version:

PREFACE

XV

1. The student must acquire an understanding of the algorithms
that manipulate various data structures.

2. The student must learn to select from among data structures
for a given application.

Relative to this second goal, data structures could be considered the
toolbox of the computer scientist or data processor. Many jobs can be
accomplished in more than one way; the student who understands
data structures thoroughly is able to match the tool to the job most
effecsively.

Understanding of data structures is enhanced by pictures. For this
reason, we have made ours a graphically oriented book. Throughout
the text, algorithms written in Pascal are enhanced by “graphic docu-
mentation” to clarify the responsibilities of various segments of code.
Our experience as instructors of data structures has so often indicated
that a student’s question about how to do something can be answered
by the simple dictum to “draw a picture.” Data structures are, after all,
the programmer’s way of implementing certain types of mental im-
ages within the computer. Every segment of a program is in some way
responsible for maintaining or altering that structural image. Can
there be a better way to document that segment than to picture what
it is intended to do? In a certain sense, this graphic orientation embod-
ies the essence of data abstraction—that the student understand the
data structure itself rather than memorize a particular algorithm or
the details of a particular implementation.

The order of topics presented in the book is relatively flexible, al-
though the first seven chapters represent a core of fundamental mate-
rial that should be covered before moving on to any of the topics in
Chapters 8 through 12. Chapter 1 lays the groundwork for the rest of
the book by specifying a rationale for data structures and developing
those advanced features of Pascal (including records and pointer vari-
ables) that will be used throughout. The first data structure discussed
in detail is the linked list, presented in Chapter 2. Initial implementa-
tion of linked lists in this chapter is achieved through the use of arrays
instead of Pascal’s NEW and DISPOSE procedures to allow the stu-
dent to actually trace through the implementation. In Chapter 3, we
consider strings in detail as an example of an application in which
pointers, indices, and linked lists can be used effectively. Chapter 4
presents two special types of lists: queues and stacks, and Chapter 5
follows up on this theme by looking at two critically important appli-
cations of stacks: the parsing of arithmetic expressions and recursion.
Chapters 6 and 7 cover in detail what we consider to be the most versa-
tile of all data structures—the tree. We discuss both binary and gen-
eral trees, along with such variations as threading and height-
balancing.

Xviii PREFACE

Although the first seven chapters of this book should be studied
consecutively, there is considerable leeway in the order in which the
remaining topics may be covered. Some instructors may find it possi-
ble to cover only selected topics from Chapters 8 through 12, and
these chapters are connected loosely enough to allow picking and
choosing. Chapter 8 fully describes multidimensional and sparse ma-
trices, which serves as a convenient introduction to the adjacency ma-
trix representation of graphs and networks, the topic of Chapter 9.
Chapters 8 and 9 thus form a cohesive unit. However, it is possible to
proceed directly from Chapter 7 to either Chapter 10 (Sorting) or
Chapter 11 (Search Methods). Chapter 12, Data Structures and Data
Management, presents a nice wrapup for a data structures course by
describing how a variety of data structures can be applied in the areas
of memory management and database management. Because not all
instructors will find time in a semester to cover the material in Chap-
ter 12, we have written it such that it lends itself to independent
study. For those students going on into systems programming, the
material in Chapter 12 on memory management algorithms used by
operating systems should prove particularly valuable. For the more
business-oriented student, the database management section is more
suitable. The following flowchart summarizes the possible sequences
in which chapters can be covered.

Additional features of the book include “In the World of Applica-
tions. . .” boxes, which emphasize how data structures are used in a
variety of settings; chapter exercises and programming problems; a
glossary; and an appendix of solutions to odd-numbered exercises.
The Instructor’s Manual provides useful hints on how to present the
material in each chapter, solutions to even-numbered exercises, and
additional ideas for programming problems and projects. Transpar-
ency masters that can be used to illustrate key concepts are available
to adopters from the publisher. A list of figures from the text available
as transparency masters is in the Instructor’s Manual.

Chapters
1-7
Chapters Chapter Chapter
8-9 10 11
Selected

material from
Chapter 12

PREFACE

Xix

Acknowledgements

Although work on this text was greatly smoothed by the previous
work we had done for the pseudocode version, a large number of peo-
ple have nonetheless played key roles in its development. Of course,
our students never cease to amaze us with the clever ideas and insights
they continually offer. Jerry Westby, our editor, always had another
(and another) innovative idea to try. Our work with production editor
Peggy Adams and the staff at West Publishing proved to be a pleasure.
Thanks go also to the large group of skilled reviewers who offered
constructive criticism on our efforts:

John Rezac, Johnson County Community College
Andrew Bernat, University of Texas at El Paso

Michael Henry, West Virginia University

Charles Williams, Georgia State University

W. Bruce Croft, University of Massachusetts at Amherst
Robert Holloway, University of Wisconsin at Madison
Tamisra Sanyal, Monroe Community College

Martha Hansard, Georgia State University

Barent Johnson, University of Wisconsin at Oshkosh

Finally, our most sincere gratitude is directed to our wives and
families. The warmth and freshness they provide keep our lives nicely
unstructured.

Index

Abstract syntax trees, 199
Acyclic graph, 259, 260

ADD, procedure, 87, 92
ADDREC, procedure, 357, 358
ADDTOTREE, procedure, 280
Adelson-Velskii, G. M., 185, 199
Adjacency matrix, 249

Air Force space missions, 427
ALCOR Pascal, 417

Algorithms, 5-21, 418

All, function, 280

ALLOCATE, procedure, 370
Analysis of the Bubble Sort, 424
Ancestor, 144

Arc, 247

Array implementation of a stack, 98
Arrays, 1,2,27-29, 83-91, 98-99
Artificial intelligence, 4, 246
Assignment, string, 54, 75
Asymptotic Measurements, 421
Available list, 368

Average case, 421

AVERAGE, procedure, 31

AVL method, 186

AVL rotation, 186

AVL trees, 185

AVLINSERT, procedure, 195

B-tree index, 345
B-tree indexing, 346-348
efficiency of, 348-350
B-tree insertions, 349-350
B-tree of order n, 346
B-trees, 346
Backtracking, 106, 132-133
Backward arcs, 259
Backward link, 43
Balance factor, 185
Band matrices, 227
Basic, 53
Basic-plus, 61
Batch processing, 83
Best case, 421
Best fit strategy, 411
Big O, 421
Binary buddies, 370
Binary buddy system, 373-377, 409
Binary representation—general trees, 201

I-1

Binary search, 318
efficiency of, 321, 424
Binary tree, 145, 147, 301
indexing, 345
search, 322
traversals, 152
BINARYSEARCH, procedure, 320
Blank padding, 55, 56
Blink, pointer, 69, 70
Block, 47
Blocked queue, 94
Blocking, 307, 340
Boundary folding, 325
Boundary tag buddies, 370, 381, 409
Boundary tag method, 381
Branch, 143
Breadth-first search, 263
Breadth-first spanning forest, 263
Bubble sort, 6-12, 288
efficiency of, 8, 9
Bucket, 338
Bucket hashing, 338
Buddy blocks, 370
Buddy systems, 370
BUILDTREE, procedure, 170
Buying decisions, 4

CALL, 122

CASE, statement, 75

Chained pointer database, 394
Character strings, 53

Check buddies, reference, 372
Child nodes, 143

Circular implementation of a queue, 89-91
Circular linked list, 42

Cluster, 73

COALESCE, procedure, 371, 372
Coalesced, 37

COBOL, 53

CODASYL model, 403-406
Codd, E. F., 406

Collision processing, 328-340
Collisions, 323, 335

Column coordinates, 222
Column major, 224
Compaction, 66, 67, 366
Compiler design, 96, 160, 198
Complex network, 399, 400, 403

1-2 INDEX

Computer system, 365

Computerworld, 301

CONCAT_FL, procedure, 57, 58
Concatenation, string, 54, 56-58, 63, 73
Conformant arrays, 309

Cross arcs, 259

Cybernetics, 246

Cycle, 248

Cylinder, 342

Data abstraction, 230, 394
Data duplication problem, 386
Data item, 1
Data structures, uses of, 4
Data systems, languages, 404
Database, 4, 365, 386

designers, 403

management, 206, 263, 365, 386
Database management system (DBMS), 403
Datamation, 394
Dec’s VAX Pascal, 416
Degree, 248
DELETE, procedure, 77
DELETENODE, procedure, 38-41, 48
DELETENODEDOUBLE, procedure, 44, 45
Deleting from a queue, 84-86, 93
Deleting in a linked list, 37-40
Deletion algorithm for binary tree, 164
Deletion, string, 54
Delimiter, 109
Depth of a tree, 148
Depth-first search, 257
Depth-first spanning forest, 259
DFSEARCH, procedure, 262
Digit or Character extraction, 326
Digraph, 246
Dijkstra, E. W., 269
Diminishing increment sort, 294
Direct access, 314
Directed edges, 246
Directed graph, 246
Directed path, 247
Directory, 342, 343, 344
Disk layout, 339
Disk pack, 342
DISPOSE, procedure, 32, 39
Division remainder technique, 326, 328
Dope vector, 225, 228
Dot notation, 19
Double arrow arcs, 259
Doubly linked circular list, 43, 69
Driver procedures, 428
Dummy header, 37, 40, 42, 100
Dummy root node, 179
Dynamic memory allocation, 17-21, 30, 61,

63,91, 100

Edges, 246

Edgeweight, 252

Efficiency of the binary tree, 168
Efficiency-Generalized dope vector, 234
Efficient algorithm, 5, 420

Equivalence classes, 428, 429
EVALUATEPOSTFIX, procedure, 114, 115
External sorting, 286, 307

Factorial expressions, 116
FACTORIAL, function, 118
Fibonacci buddies, 370
buddy systems, 377-381, 409
numbers, 380
schemes, 384
sequence, 377
systems, 377
Fields, 11, 386
FIFO, 82
File organization, 314
File sorting, 307
FIND, command, 416
FINDMIN, procedure, 280
FINDPATH, procedure, 255
Finiteness, 418, 419
First-in-first-out (FIFO), 82, 103
Fixed length, 366
Fixed length string method, 54-60
Flink, pointer, 69, 70
Floyd, R. W., 274
Folding, 325
FORTRAN, 53, 224, 324
Forward link, 43
Fragmentation, 366
Fragments, 366
Front, pointer, 82-95, 100, 103
Full, 162
Full tree, 177
Functionally cohesive, 24
Fundamental criterion of efficiency, 421

Garbage collection, 63, 66-67, 365, 409
GARBAGECOLLECT, procedure, 371
Gaussian elimination, 245

Genealogical tree, 142

General efficiency of sort routines, 287
General graph, 246

General trees, 200

Generalized dope vector method, 227
Generic, 5

GET, command, 416

GETNODE, procedure, 32-34, 37, 39, 43, 48
Global, 10

Global variables, 134
Graph, 246

Graphic documentation, 7

INDEX

Hamilton, Sir William Rowan, 252
HANOI, procedure, 121, 122
HASH, function, 357
Hashfile, program, 357-359
Hashing function, 322
construction of, 323-328
Hashing subscripts, 241
Hashing techniques, 323-328
Head pointer, 30
Heap, 18
Heap sort, 301-306
efficiency of, 305
HEAPSORT, procedure, 304
Height of a tree, 185
Height-balanced binary trees, 185
Height-balancing, 176, 177
Hierarchical, 142, 146
Database Mgmt. Systems, 146
model, 403-405
Hinds, J. A., 381

IMS (Information Management System), 404
Incidence matrix, 249

Indegree, 248

Index, 340

Index tables, 61-64

Indexed search techniques, 340-355
Indexed sequential access Method, 341

Indexed sequential search technique, 341-345, 425

Infix notation, 107, 147, 156
INFIXPRIORITY, function, 110
Information management systems, 146
INITIALIZE, procedure, 33

Inorder predecessor, 178

Inorder successor, 178

Inorder threads, 178

Inorder traversal, 147, 156, 178, 179

INORDER_STACK_TRAVERSAL, procedure, 157

INORDERTRAYV, procedure, 156
Input, 418, 419
INSERT, procedure, 76
INSERT_FL, procedure, 59, 60
INSERT_LL, procedure, 70-72
INSERT_WI, procedure, 64-65, 68
Inserting in a linked list, 32, 33, 36
Inserting in a queue, 84, 85, 87, 92, 95
Insertion rule, 161, 182
Insertion sort, 288

efficiency of, 290
INSERTION, procedure, 289
Insertion, string, 54, 63-66, 70
Insertions into a threaded tree, 182

INSERTNODE, procedure, 36, 37-39, 42, 48

INSERTNODEDOQUBLE, procedure, 44, 45
INSERTTHREADED, procedure, 184
INSPECT, procedure, 358, 359

Internal sorting, 286

Intersection records, 405

INTOPOST, procedure, 112, 113
Intrinsically Slow Access Method, 345
Inverted files, 392, 397

ISAM, acronym, 341

Key, 314

Key-to-address transformation, 322
Kirchoff’s laws, 235

Kroehnke, D., 389

kth Fibonacci sequence, 381

Landis, Y. M., 185, 199

Last-in-first-out (LIFO), 82, 103

Le Chatelier, Henri Louis, 235

Leaf node, 144

Left buddy count, 380

Left subscript major form, 226

Left subtree, 145

LEFTOFLEFT, procedure, 188

Length of a path, 250

LENGTH, function, 55, 56

Level of a tree, 143

LIFO, 82, 103

Linear collision processing, 328-331

Linear hashing, efficiency of, 331

Linear representation, 147, 148

Linear sequence of memory locations, 223

LINEARHASH, procedure, 329, 330

Link field, 30

Linked hashing, efficiency of, 337, 338

Linked lists, 27, 28, 91-93, 222
implementation of queue, 89, 91-93
implementation, stack, 101
method, 69-74

Linked method-collision processing, 335-337

Linked representation, 147, 149, 150, 152
LINKEDHASH, procedure, 337

LIST, procedure, 78

LOADTREE, procedure, 211

Local variables, 134

Logical module, 6

Logical order, 30

Lset, 61-63

Management of data, 365
Many-to-many relationship, 264, 400
Mapping function, 224

Matrix, 222

Matrix multiplication, 251

Maurer & Williams, authors, 325
Members, the, 404

Memory stack, 97

I-4 INDEX

Memory waste, 55, 58

Menu, 75

Merge sort, 307-308

Meyers, Glenford, 431

Micro assembler, 97

Minimum spanning tree, 252, 265
MINPATHFLOYD, procedure, 274
MINSPAN, procedure, 268, 280
MINSPAND, program, 280

Mod, operator, 89-91, 103
Modular design, 75

Modular testing, 428
Multi-linked list, 46, 47
Multidimensional arrays, 224
Multilink database, 396

Multilink files, 392, 394-397
Murphy’s Law, 6, 328

Network, 252, 264, 399

NEW, procedure, 18, 32, 39, 100

Newton Method, 419

Nil, 40, 42

Node, 30, 246

Non-unique secondary key, 390
NONRECURSIVEHANOI, procedure, 128-130
Null, 30, 73

One-to-many relationship, 254, 388, 389, 392,
396, 400, 401, 403, 404, 407

One-to-one relationship, 388

Operating system, 94, 252

Optimal index, 425

Order of a function, 421

Ordered list, 28

Ordering, 286

Ordering property for binary trees, 160, 177, 182

Otherwise, statement, 75

Outdegree, 248

Output, 418, 420

Overflow area, 335

Owner, the, 404

Palindrome, program, 104, 135-136
Parallel fields, 315 -

Parent node, 143
Parenthesizing expressions, 108
Parse trees, 199

Parsing, 107, 109-111

Pascal record declaration, 11, 13
Pattern matching, 54, 70
Physical order, 30

Pivot node, 186, 192

PL/1, 53

PLACEQUEEN, procedure, 134

Pointer sort, 18-20, 29

Pointer variables, 18-20

Pointers, 14, 149

Polynomial, 51, 52

Pop, 100, 103, 110, 113, 118, 124, 127, 130, 154

POP, procedure, 100

Popping, stack, 82-83, 96

Postern of Fate, novel, 73

Postfix notation, 107, 109, 147, 159

Postorder traversal, 147, 159, 204

POSTORDERTRAYV, procedure, 159

Preciseness, 418, 419

Prefix notation, 108, 109, 147, 152

Preorder traversal, 147, 152-153, 257

PREORDER_STACK_TRAVERSAL, procedure,
154, 155

PREORDERTRAYV, procedure, 153

Primary key, 366, 390

Prime hash area, 335

Principle of Le Chatelier, 235

Priority queues, 94-95

Program design, 427

Proportional, 9

Push, 97,98, 103,110, 113,118, 120, 124, 154

PUSH, procedure, 100

Pushing, stack, 82-83, 97

Put, command, 416, 417

PUT, procedure, 233

Quadratic and Rehashing methods, 332, 333
efficiency, 333, 334
Queue, 82-89, 222
conditions, 85, 91, 94
examples, 84-93
Quick sort, 295
efficiency of, 299
recursive, 299
QUICKSORT, procedure, 297
QUICKSORTRECURSIVE, procedure, 299

Random number generator, 324

Randomized storage, 324

Rank, 225

Read-write head, 339

Ready queue, 94

Rear, pointer, 82-93, 103

Record, 2, 386

Recursion, 97, 115-118, 120, 122-123, 127, 130,
137, 144,257

Recursive call, 97

Relational DBMS, 394

Relational algebra, 406

Relational calculus, 406

INDEX I-5

Relational model, 403, 406
Relations, 406

REMOVE, procedure, 86, 92-93
Reset, command, 415, 416
RETURNNODE, procedure, 32, 35, 37, 39
Reverse Polish notation, 107
REVERSE, procedure, 135

Right subscript major form, 226
Right subtree, 145
RIGHTOFLEFT, procedure, 190
Root, 143

Root node, 143

Row coordinates, 222

Row major, 224

Runtime, 4

Scheduling, 83-95, 100, 246, 252
Schneyer, R., 431
Search efficiencies, Summary table, 361
Search node, 257
Secondary key processing, 390
Sectors, 339
Seeds, 324
Seek, command, 415, 416, 417
Segment, 307
Selection sort, 290
efficiency of, 291
SELECTION, procedure, 290-291
Semaphores, 94
Sequential search, 314, 317, 339
efficiency of, 318
SEQUENTIALSEARCH, procedure, 317
Shell sort, 292-294
efficiency of, 294
Shell, program, 309
SHELLSORT, procedure, 294-295, 309-310
Shift folding, 325
Shortest path algorithm, 268
SHORTPATH, procedure, 273
Siblings, 143
Simple network, 399, 403
Simulation, 4
Single arrow arcs, 259
Singly linked circular list, 42
Singly linked list, 30, 52
Singly-dimensioned arrays, 222
Sink node, 248
SNOBOL, 53
Software engineering, 24
Software system, 24
Sorting, 6-23, 29, 286
Sorting algorithms, 286
Sorting methods comparison table, 311
Source node, 248
Spanning forest, 399

Sparse matrices, 224, 249

SPARGSE, function, 231

Stack, 82, 96, 107, 109-111, 113, 115, 118, 120,

122-127, 222

Stack frame, 118-119, 123

Stack, examples, 83, 98, 101

STACKPRIORITY, function, 110

Static memory allocation, 17, 30

String handling, 53

String manipulation tools, 54
table, 79

String overflow, 58, 59

String, storage techniques, 54

Strongly connected, 247

Stub routines, 428

Subroutine call, 95

Substring operations, 54, 70, 72

Subtree, 144

Symbol table, 224

Symmetric matrices, 250

Symmetric structures, 146

Synonyms, 323

System memory allocation, 18, 19

Tail recursion, 120
Target, 314
Teague, author, 325
Ternary representation—general tree, 204
Ternary tree, 204
TERNARYPREORDER, procedure, 208, 212
Test cases, 428
Text oracle, 428
Text editor, 76-78, 81
Text manipulation, uses of, 53
Texted, program, 76-79
THREADEDINORDER, procedure, 181
Threading, 150, 176
Top, pointer, 82, 96-103
Topological order, 261, 276
TOPOLOGICALORDER, procedure, 277
Tracks, 339
Traveling salesman problem, 252
Traversing, 146-147, 152
Tree, 142, 222, 246
Tree arcs, 259
Trie indexing, 350-354

efficiency of, 354-355

insertions, 354, 355
Two-dimensional array, 222

UCSD and TURBO Pascal, 416
Unbounded set, 421
Undirected graph, 246
Uniqueness, 418, 419

I-6 INDEX

Unix operating system, 163
UNSTACKC, procedure, 101
Upper triangular matrix, 276
Usable workspace, 66

Vectors, 27
Vertices, 252
Volatile list, 321

WALKDOWN, procedure, 304
Weakly connected, 247

Weighted edges, 252, 264
Workspace/index table method, 61-69
Worst case, 421

Wrap around, queue, 89, 90

Contents

Preface xv

1 .
Data Structures—AnN Overview 1

1-1 Introductory Considerations 1
1-2 Algorithms for Data Structures 5
1-3 An Example of Algorithm Development in Pascal 6
Initial Version of Bubble Sort, 6
Enhancing Efficiency of the Bubble Sort, 9
In the World of Applications. .. 23
Program Design Considerations 24
SUMMARY 25
KEY TERMS 25
EXERCISES 26
PROGRAMMING PROBLEMS 26

2
Linked Lists 27

2-1 Introductory Considerations 27
2-2 Arrays 27
2-3 Linked Lists 28
Singly Linked Lists, 30
Insertions and Deletions, 32
2-4 Variations on Linked List Structures 40
Dummy Headers, 40
In the World of Applications. .. 41
Circular Linked Lists, 42
Doubly Linked Circular List, 43
Program Design Considerations 47
SUMMARY 49
KEY TERMS 49
EXERCISES 50
PROGRAMMING PROBLEMS 50

vii

