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Preface

With the rapid evolution of computer science, the study of data struc-
tures has found its way into the undergraduate curriculum as early as
the sophomore year. Moreover, an increasingly diverse collection of
students is studying this subject. Once solely the domain of hard-core
computer science majors, data structures is now taken by business,
economics, engineering, and mathematics majors who wish to en-
hance their chosen discipline with a strong background in computer
science. Texts that emphasize a highly rigorous mathematical ap-
proach to data structures no longer are appropriate for this growing
number of heterogeneous students. In Introduction to Data Struc-
tures with Pascal, we attempt to satisfy the needs of this new group of
students by providing a text that emphasizes implementing and evalu-
ating data structures in practical situations and avoids relying on an
overly theoretical approach. The text is designed for anyone who has
had a solid programming background in Pascal. Such a background
should include a detailed grasp of procedures, functions, parameter
passing, and arrays. To a lesser extent, some prior work with records
and files is desirable although these topics are developed as needed in
the text itself.

Introduction to Data Structures with Pascal represents an alterna-
tive to our earlier pseudocode-based Introduction to Data Structures.
The development of such an alternative was motivated by a near 50-
50 split which we found among the reviewers of our efforts. Though
these reviewers were essentially in agreement as to topics covered and
the order in which they were presented, there was a pronounced and
irresolvable split between those who believed in a pseudocode ap-
proach and those who felt that seeing algorithms in the familiar Pascal
language would make concepts easier for students. It is to this latter
group that this version of the text is addressed.

XV
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In addition to providing a Pascal-specific orientation, we have
also expanded our coverage of important software engineering con-
cepts to help students as they begin using data structures in larger pro-
gramming projects. Sections on Program Design Considerations
appear in each chapter. Some of these sections (notably those in Chap-
ter 3, Chapter 7, and Chapter 11) deal with the development of com-
plete large-scale programs which use the data structures studied up to
that point. Others touch upon design issues which are then further ex-
panded in the exercises and programming problems.

Three new appendices have also been added for those students of
Pascal who may need a bit more general experience as well as a thor-
ough treatment of data structures. Appendix C presents a description
of those testing, verification, and debugging strategies that are so es-
sential for students developing large-scale programs. Appendix B on
formal analysis of algorithms presents the basics of this topic. We
have chosen to treat this issue in a separate appendix because we want
the book to retain its intuitive, implementation-oriented approach.
Appendix A discusses how various versions of Pascal implement di-
rect access files—a topic which we consider essential despite its ab-
sence from the Pascal standard. A “real world” proof of the essential
nature of this topic is that virtually all widely used implementations
of Pascal have included procedures for direct access files in their
repetoires. Appropriate references to all of these appendices are made
throughout the text, making it easy for the student to merge this addi-
tional material with specific data structures topics. Depending upon
the curriculum at your institution, this increased emphasis upon soft-
ware engineering issues and the coverage of advanced topics in a
Pascal-specific fashion may in fact make the text suitable for an ad-
vanced course in programming, as described in the C.S. II Course
Guidelines recommended by the recent ACM Curriculum Task Force
for C.S. I1.

Further changes from the pseudocode version are less oriented to-
ward Pascal but instead induced by feedback we have been receiving
from the field. Exercises have been added in each chapter. The the-
matic Wing-and-a-Prayer Airlines problems proved popular, so we
have included two other thematic problem lines running throughout
the text—the Fly-By-Night Credit Company and the Bay Area Brawl-
ers Professional Football Club. In Chapter 5, we have expanded our
discussion of recursion, offering a more gradual introduction to this
difficult topic. Discussions of algorithm efficiency in the body of the
text itself have been isolated in separate sections for greater emphasis
and easier reference. Finally, new “In the World of Applications”
boxes have been developed for Chapters 4, 7, and 9 to replace old ones
which some readers felt lacked a “real world” flavor.

However, despite these changes, the two major goals of this text
remain unchanged from the pseudocode version:
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1. The student must acquire an understanding of the algorithms
that manipulate various data structures.

2. The student must learn to select from among data structures
for a given application.

Relative to this second goal, data structures could be considered the
toolbox of the computer scientist or data processor. Many jobs can be
accomplished in more than one way; the student who understands
data structures thoroughly is able to match the tool to the job most
effecsively.

Understanding of data structures is enhanced by pictures. For this
reason, we have made ours a graphically oriented book. Throughout
the text, algorithms written in Pascal are enhanced by “graphic docu-
mentation” to clarify the responsibilities of various segments of code.
Our experience as instructors of data structures has so often indicated
that a student’s question about how to do something can be answered
by the simple dictum to “draw a picture.” Data structures are, after all,
the programmer’s way of implementing certain types of mental im-
ages within the computer. Every segment of a program is in some way
responsible for maintaining or altering that structural image. Can
there be a better way to document that segment than to picture what
it is intended to do? In a certain sense, this graphic orientation embod-
ies the essence of data abstraction—that the student understand the
data structure itself rather than memorize a particular algorithm or
the details of a particular implementation.

The order of topics presented in the book is relatively flexible, al-
though the first seven chapters represent a core of fundamental mate-
rial that should be covered before moving on to any of the topics in
Chapters 8 through 12. Chapter 1 lays the groundwork for the rest of
the book by specifying a rationale for data structures and developing
those advanced features of Pascal (including records and pointer vari-
ables) that will be used throughout. The first data structure discussed
in detail is the linked list, presented in Chapter 2. Initial implementa-
tion of linked lists in this chapter is achieved through the use of arrays
instead of Pascal’s NEW and DISPOSE procedures to allow the stu-
dent to actually trace through the implementation. In Chapter 3, we
consider strings in detail as an example of an application in which
pointers, indices, and linked lists can be used effectively. Chapter 4
presents two special types of lists: queues and stacks, and Chapter 5
follows up on this theme by looking at two critically important appli-
cations of stacks: the parsing of arithmetic expressions and recursion.
Chapters 6 and 7 cover in detail what we consider to be the most versa-
tile of all data structures—the tree. We discuss both binary and gen-
eral trees, along with such variations as threading and height-
balancing.
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Although the first seven chapters of this book should be studied
consecutively, there is considerable leeway in the order in which the
remaining topics may be covered. Some instructors may find it possi-
ble to cover only selected topics from Chapters 8 through 12, and
these chapters are connected loosely enough to allow picking and
choosing. Chapter 8 fully describes multidimensional and sparse ma-
trices, which serves as a convenient introduction to the adjacency ma-
trix representation of graphs and networks, the topic of Chapter 9.
Chapters 8 and 9 thus form a cohesive unit. However, it is possible to
proceed directly from Chapter 7 to either Chapter 10 (Sorting) or
Chapter 11 (Search Methods). Chapter 12, Data Structures and Data
Management, presents a nice wrapup for a data structures course by
describing how a variety of data structures can be applied in the areas
of memory management and database management. Because not all
instructors will find time in a semester to cover the material in Chap-
ter 12, we have written it such that it lends itself to independent
study. For those students going on into systems programming, the
material in Chapter 12 on memory management algorithms used by
operating systems should prove particularly valuable. For the more
business-oriented student, the database management section is more
suitable. The following flowchart summarizes the possible sequences
in which chapters can be covered.

Additional features of the book include “In the World of Applica-
tions. . .” boxes, which emphasize how data structures are used in a
variety of settings; chapter exercises and programming problems; a
glossary; and an appendix of solutions to odd-numbered exercises.
The Instructor’s Manual provides useful hints on how to present the
material in each chapter, solutions to even-numbered exercises, and
additional ideas for programming problems and projects. Transpar-
ency masters that can be used to illustrate key concepts are available
to adopters from the publisher. A list of figures from the text available
as transparency masters is in the Instructor’s Manual.

Chapters
1-7
Chapters Chapter Chapter
8-9 10 11
Selected

material from
Chapter 12
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