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xii Preface

knowledge of the basic facts about random variables than to have a su-
perficial knowledge of the latest techniques.

I also believe that students should be trained to question the validity
and reasonableness of conventional statistical techniques. Therefore, I
give a thorough analysis of the problem of choosing estimators, including
a comparison of various criteria for ranking estimators. I also present a
critical evaluation of the classical method of hypothesis testing, especially
in the realistic case of testing a composite null against a composite alter-
native. In discussing these issues as well as other problematic areas of
classical statistics, I frequently have recourse to Bayesian statistics. I do so
not because I believe it is superior (in fact, this book is written mainly
from the classical point of view) but because it provides a pedagogically
useful framework for consideration of many fundamental issues in statis-
tical inference.

Chapter 10 presents the bivariate classical regression model in the
conventional summation notation. Chapter 11 is a brief introduction to
matrix analysis. By studying it in earnest, the reader should be able to
understand Chapters 12 and 13 as well as the brief sections in Chapters 5
and 9 that use matrix notation. Chapter 12 gives the multiple classical
regression model in matrix notation. In Chapters 10 and 12 the concepts
and the methods studied in Chapters 1 through 9 in the framework of the
Li.d. (independent and identically distributed) sample are extended to the
regression model. Finally, in Chapter 13, I discuss various generalizations
of the classical regression model (Sections 13.1 through 13.4) and certain
other statistical models extensively used in econometrics and other social
science applications (13.5 through 13.7). The first part of the chapter is
a quick overview of the topics. The second part, which discusses qualitative
response models, censored and truncated regression models, and dura-
tion models, is a more extensive introduction to these important subjects.

Chapters 10 through 13 can be taught in the semester after the semester
that covers Chapters 1 through 9. Under this plan, the material in Sections
13.1 through 13.4 needs to be supplemented by additional readings.
Alternatively, for students with less background, Chapters 1 through 12
may be taught in a year, and Chapter 13 studied independently. At Stan-
ford about half of the students who finish a year-long course in statistics
and econometrics go on to take a year’s course in advanced econometrics,
for which I use my Advanced Econometrics (Harvard University Press, 1985).
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It is expected that those who complete the present textbook will be able
to understand my advanced textbook.

I am grateful to Gene Savin, Peter Robinson, and James Powell, who
read all or part of the manuscript and gave me valuable comments. [ am
also indebted to my students Fumihiro Goto and Dongseok Kim for care-
fully checking the entire manuscript for typographical and more substan-
tial errors. I alone, however, take responsibility for the remaining errors.
Dongseok Kim also prepared all the figures in the book. I also thank
Michael Aronson, general editor at Harvard University Press, for constant
encouragement and guidance, and Elizabeth Gretz and Vivian Wheeler
for carefully checking the manuscript and suggesting numerous stylistic
changes that considerably enhanced its readability.

I dedicate this book to my wife, Yoshiko, who for over twenty years has
made a steadfast effort to bridge the gap between two cultures. Her work,
though perhaps not conspicuous in the short run, will, I am sure, have a
long-lasting effect.
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’I INTRODUCTION

1.1 WHAT IS PROBABILITY?

As a common word in everyday usage, probability expresses a degree of
belief a person has about an event or statement by a number between zero
and one. Probability also has a philosophical meaning, which will not be
discussed here. The two major schools of statistical inference—the
Bayesian and the classical—hold two different interpretations of prob-
ability. The Bayesian (after Thomas Bayes, an eighteenth-century English
clergyman and probabilist) interpretation of probability is essentially that
of everyday usage. The classical school refers to an approach that origi-
nated at the beginning of the twentieth century under the leadership of
R. A. Fisher and is still prevalent. The classical statistician uses the word
probability only for an event which can be repeated, and interprets it as the
limit of the empirical frequency of the event as the number of repetitions
increases indefinitely. For example, suppose we toss a coin n times, and a
head comes up r times. The classical statistician interprets the probability
of heads as a limit (in the sense that will be defined later) of the empirical
frequency r/n as n goes to infinity. Because a coin cannot be tossed
infinitely many times, we will never know this probability exactly and can
only guess (or estimate) it.

To consider the difference between the two interpretations, examine
the following three events or statements:

(1) A head comes up when we toss a particular coin.

(2) Adantis, described by Plato, actually existed.
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(3) The probability of obtaining heads when we toss a particular
coin is Y.

A Bayesian can talk about the probability of any one of these events or
statements; a classical statistician can do so only for the event (1), because
only (1) is concerned with a repeatable event. Note that (1) is sometimes
true and sometimes false as it is repeatedly observed, whereas statement
(2) or (3) is either true or false as it deals with a particular thing—one of
a kind. It may be argued that a frequency interpretation of (2) is possible
to the extent that some of Plato’s assertions have been proved true by a
later study and some false. But in that case we are considering any asser-
tion of Plato’s, rather than the particular one regarding Atlantis.

As we shall see in later chapters, these two interpretations of probability
lead to two different methods of statistical inference. Although in this
book I present mainly the classical method, I will present Bayesian method
whenever I believe it offers more attractive solutions. The two methods
are complementary, and different situations call for different methods.

1.2 WHAT IS STATISTICS?

In our everyday life we must continuously make decisions in the face of
uncertainty, and in making decisions it is useful for us to know the prob-
ability of certain events. For example, before deciding to gamble, we would
want to know the probability of winning. We want to know the probability
of rain when we decide whether or not to take an umbrella in the morn-
ing. In determining the discount rate, the Federal Reserve Board needs
to assess the probabilistic impact of a change in the rate on the unemploy-
ment rate and on inflation. It is advisable to determine these probabilities
in a reasonable way; otherwise we will lose in the long run, although in
the short run we may be lucky and avoid the consequences of a haphazard
decision. A reasonable way to determine a probability should take into
account the past record of an event in question or, whenever possible, the
results of a deliberate experiment.

We are ready for our first working definition of statistics: Statistics is the
science of assigning a probability to an event on the basis of experiments.

Consider estimating the probability of heads by tossing a particular coin
many times. Most people will think it reasonable to use the ratio of heads



1.2 | What Is Statistics? 3

over tosses as an estimate. In statistics we study whether it is indeed
reasonable and, if so, in what sense.

Tossing a coin with the probability of heads equal to p is identical to
choosing a ball at random from a box that contains two types of balls, one
of which corresponds to heads and the other to tails, with p being the
proportion of heads balls. The statistician regards every event whose
outcome is unknown to be like drawing a ball at random from a box that
contains various types of balls in certain proportions.

For example, consider the question of whether or not cigarette smoking
is associated with lung cancer. First, we need to paraphrase the question
to make it more readily accessible to statistical analysis. One way is to ask,
What is the probability that a person who smokes more than ten cigarettes
a day will contract lung cancer? (This may not be the optimal way, but we
choose it for the sake of illustration.) To apply the box-ball analogy to this
example, we should imagine a box that contains balls, corresponding to
cigarette smokers; some of the balls have lung cancer marked on them
and the rest do not. Drawing a ball at random corresponds to choosing a
cigarette smoker at random and observing him until he dies to see
whether or not he contracts lung cancer. (Such an experiment would be
a costly one. If we asked a related but different question—what is the
probability that a man who died of lung cancer was a cigarette smoker?—
the experiment would be simpler.)

This example differs from the example of coin tossing in that in coin
tossing we create our own sample, whereas in this example it is as though
God (or a god) has tossed a coin and we simply observe the outcome.
This is not an essential difference. Its only significance is that we can toss
a coin as many times as we wish, whereas in the present example the
statistician must work with whatever sample God has provided. In the
physical sciences we are often able to conduct our own experiments, but
in economics or other behavioral sciences we must often work with a
limited sample, which may require specific tools of analysis.

A statistician looks at the world as full of balls that have been drawn by
God and examines the balls in order to estimate the characteristics (“pro-
portion”) of boxes from which the balls have been drawn. This mode of
thinking is indispensable for a statistician. Thus we state a second working
definition of statistics: Statistics is the science of observing data and making
inferences about the characteristics of a random mechanism that has generated the
data.
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Coin tossing is an example of a random mechanism whose outcomes
are objects called heads and tails. In order to facilitate mathematical
analysis, the statistician assigns numbers to objects: for example, 1 to heads
and 0 to tails. A random mechanism whose outcomes are real numbers is
called a random variable. The random mechanism whose outcome is the
height (measured in feet) of a Stanford student is another random vari-
able. The first is called a discrete vandom variable, and the second, a continu-
ous random variable (assuming hypothetically that height can be measured
to an infinite degree of accuracy). A discrete random variable is charac-
terized by the probabilities of the outcomes. The characteristics of a
continuous random variable are captured by a density function, which is
defined in such a way that the probability of any interval is equal to the
area under the density function over that interval. We use the term prob-
ability distribution as a broader concept which refers to either a set of
discrete probabilities or a density function. Now we can compose a third
and final definition: Statistics is the science of estimating the probability distri-
bution of a random variable on the basis of repeated observations drawn from the
same random variable.



2 PROBABILITY

2.1 INTRODUCTION

In this chapter we shall define probability mathematically and learn how
to calculate the probability of a complex event when the probabilities of
simple events are given. For example, what is the probability that a head
comes up twice in a row when we toss an unbiased coin? We shall learn
that the answer is /4. As a more complicated example, what is the prob-
ability that a student will be accepted by at least one graduate school if
she applies to ten schools for each of which the probability of acceptance
is 0.1? The answer is 1 — 0.9'"" = 0.65. (The answer is derived under the
assumption that the ten schools make independent decisions.) Or what is
the probability a person will win a game in tennis if the probability of his
winning a point is p? The answer is

AL+ 41 — p) + 1000 = p)* + 20p(1 — p)°/[1 — 2p(1 — L.

For example, if p = 0.51, the formula gives 0.525.

In these calculations we have not engaged in any statistical inference.
Probability is a subject which can be studied independently of statistics; it
forms the foundation of statistics.

2.2 AXIOMS OF PROBABILITY

Definitions of a few commonly used terms follow. These terms inevitably
remain vague until they are illustrated; see Examples 2.2.1 and 2.2.2.
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Sample space. The set of all the possible outcomes of an experiment.
Event. A subset of the sample space.
Simple event. An event which cannot be a union of other events.

Composite event. An event which is not a simple event.

EXAMPLE 2.2.1
Experiment: Tossing a coin twice.
Sample space: {HH, HT, TH, TT}.

The event that a head occurs at least once: HH U HT U TH.

EXAMPLE 2.2.2

Experiment: Reading the temperature (F) at Stanford at noon on
October 1.

Sample space: Real interval (0, 100).
Events of interest are intervals contained in the above interval.

A probability is a nonnegative number we assign to every event. The
axioms of probability are the rules we agree to follow when we assign
probabilities.

Axioms of Probability
(1) P(A) = 0 for any event A.
(2) P(S) = 1, where S is the sample space.

(3) If{A},i=1,2, ..., are mutually exclusive (thatis, A, N A; = J
for all i # ), then P(A, U Ay U ...) = P(A}) + P(Ag) + . ...

The first two rules are reasonable and consistent with the everyday use
of the word probability. The third rule is consistent with the frequency
interpretation of probability, for relative frequency follows the same rule.
If, at the roll of a die, A is the event that the die shows 1 and B the event
that it shows 2, the relative frequency of A U B (either 1 or 2) is clearly
the sum of the relative frequencies of A and B. We want probability to
follow the same rule.
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When the sample space is discrete, as in Example 2.2.1, it is possible to
assign probability to every event (that is, every possible subset of the
sample space) in a way which is consistent with the probability axioms.
When the sample space is continuous, however, as in Example 2.2.2, it is
not possible to do so. In such a case we restrict our attention to a smaller
class of events to which we can assign probabilities in a manner consistent
with the axioms. For example, the class of all the intervals contained in
(0, 100) and their unions satisfies the condition. In the subsequent discus-
sion we shall implicitly be dealing with such a class. The reader who wishes
to study this problem is advised to consult a book on the theory of
probability, such as Chung (1974).

2.3 COUNTING TECHNIQUES

2.3.1 Simple Events with Equal Probabilities

Axiom (3) suggests that often the easiest way to calculate the probability
of a composite event is to sum the probabilities of all the simple events
that constitute it. The calculation is especially easy when the sample space
consists of a finite number of simple events with equal probabilities, a
situation which often occurs in practice. Let n(A) be the number of the
simple events contained in subset A of the sample space S. Then we have

nA)

PA) =38

Two examples of this rule follow.

EXAMPLE 2.3.1 What is the probability that an even number will show
in a roll of a fair die?

We have n(S) = 6; A = {2, 4, 6} and hence n(A) = 3. Therefore, P(A) =
0.5.

EXAMPLE 2.3.2 A pair of fair dice are rolled once. Compute the prob-
ability that the sum of the two numbers is equal to each of the integers 2
through 12.

Let the ordered pair (i, j) represent the event that i shows on the first
die and j on the second. Then § = {(i, j)l 6,7 =12,...,6}, so that n(S)
= 36. We have
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n(e+j=2)=n[(l,1)] =1,
n(i +j=3) =n[(1,2), (2,1)] =2,
n(i+j=4) =n((1,3), (3,1), (2,2)] =3,

and so on. See Exercise 2.

2.3.2 Permutations and Combinations

The formulae for the numbers of permutations and combinations are
useful for counting the number of simple events in many practical prob-
lems.

DEFINITION 2.3.1 The number of permutations of taking r elements from
n elements is the number of distinct ordered sets consisting of » distinct
elements which can be formed out of a set of n distinct elements and is
denoted by P}

For example, the permutations of taking two numbers from the three
numbers 1, 2, and 3 are (1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2); therefore,
we have P; = 6.

THEOREM 2.3.1 P! = n!l/(n —r)!, where n! reads n factorial and denotes

r

nn—1)y(n —2) -+ -2 - 1. (We define 0! = 1.)

Proof. In the first position we can choose any one of n elements and in
the second position n — 1 and so on, and finally in the rth position we
can choose one of n — r + 1 elements. Therefore, the number of permu-
tations is the product of all these numbers. O

DEFINITION 2.3.2 The number of combinations of taking r elements from
n elements is the number of distinct sets consisting of r distinct elements
which can be formed out of a set of n distinct elements and is denoted
by C'.

Note that the order of the elements matters in permutation but not in
combination. Thus in the example of taking two numbers from three,
(1, 2) and (2, 1) make the same combination.



