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Foreword

These are the proceedings of a seminar held in Lund in June 1986, devoted to function
space methods in analysis. The organizers felt that recent developments in Interpolation
Theory have important implications in various areas of analysis, and that further work in
Interpolation would benefit from the input of new problems and applications. Thus the
makeup of the seminar was considerably broader than its two predecessors (Lund 1982 and
1983). It is particularly appropriate that these seminars have taken place in Lund, where
Interpolation Theory was born some 60 years ago. To further emphasize the historical
origin of the subject, the collection is preceded by a historical lecture on the life of Marcel
Riesz.

The organizers wish to thank Naturvetenskapliga Forskningsrddet and the N.S.F. for
supporting the conference. The two non-Swedish organizers feel that they express the
sentiments of all participants in thanking Jaak Peetre and Hans Wallin as well as the
members of the mathematics department at Lund for their warm hospitality.

The Editors
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MARCEL RIESZ IN LLUND

Jaak Peetre

(Public lecture delivered on June 18, 1986 at 7 PM.)

Ladies and gentlemen,

Marcel Riesz was born on Nov. 16, 1886 in Gydr, Hungary and died on Sept. 4, 1969 in
Lund, Sweden. Thus this conference has also given us a convenient opportunity to celebrate
the 100th anniversary of his birth.

The organizers had originally planned this lecture to be delivered by Prof. Lars GAarding.
Unfortunately, Prof. GAarding is currently abroad and so, as we have not been able to
materialize his spirit, I shall try to take over his role. So imagine now a much more
charismatic personality. At least, I hope you will not end up by throwing tomatoes at me.

We all wish to believe that we are forerunners of our science, but is also important not to
lose the contact with its glorious past. Here is an appropriate quotation: "We may say that
its (mathematical history) first use to us is to put or to keep before our eyes ’illustrious
examples’ of first-rate mathematicians" ([Wel, p. 229). Therefore this talk certainly has a
place within the framework of this conference.

Sources. There are two orbituaries by Lars Garding [G1]1, [G21; [G2] is an expanded
Swedish version of [G11, with more personal recollections and a few anecdotes.

I myself once wrote a bibliography of Marcel Riesz for an Italian encyclopedia [P1]. It
turned out to be a double catastrophe: 1st it was translated into Italian and 2nd it was cut
by a factor 2 (in the middle). So don’t read it. But it was this preoccupation with Marcel
Riesz some 15 years ago that makes that I possess some of my present knowledge.

John Horvath, one of Riesz’s last associates and a personal friend, has written a very
detailed account of his early work [H11].

The wvery interesting correspondence between Marcel Riesz and the British
mathematicians (read: Hardy), is analyzed at length by Dame Mary Lucy Cartwright [C1.

It should also be mentioned that Garding is now writing a book on Swedish mathematics.
Below I draw heavily on his expert knowledge.

Pre-history of Lund mathematics. Before I start my subject proper, let me say a few

words about the status of mathematics in Lund prior to Marcel Riesz’s times.

You have already encountered the name Tycho Brahe (b. 1546 at Knutstorp mansion (50 km
NW of Lund), d. 1601 in Prague), but he has no bearing upon the University of Lund, founded
only in 1668, after the Swedish conquest in 1660. It has been maintained that the university
was created mainly for geo-political reasons, to prevent the sons of the local clergy to

attending Danish schools.



There are at least three names of some note in the history of mathematics connected with
Lund. Characteristically, none of these were professional mathematicians.
15”’ century. Erlang Samuel Bring (1736 - 1798) was a professor of history. His name is

attached to the Bring-Jerrard theorem, stating that an algebraic equation of the 5th degree

can be brought to the normal form x5 + ax + b =0, using a suitable Tschirnhaus transform.
Some people have seen in Bring a precursor of Abel’s but, according to Garding, this is a
gross overestimation.

1‘3"h century. Albert Victor Backlund (1845-1922) was a professor of physics. His name

again is connected with the Backlund transform, now very fashionable in non-linear p.d.e.

(sine-Gordon and all that).
Turn of the century. Finally, Carl Ludwig Wilhelm Charlier (1862 - 1934) was an

astronomer. Being an pioneer in stellar statistics, it is natural that he became involved in

questions of probability. The Charlier polynomials form a system of "discrete" orthogonal

polynomials corresponding to the Poisson distribution.

The modern era of Lund mathematics started - if we exclude a short interlude with the
Dane Niels Norlund, famous for several monographs on topics such as difference equations
and special functions, who was a professor here for a year or so - with Marcel Riesz being
appointed a full professor in 1926. After his retirement in 1952 he spent some ten years at
various places in the United States - Bloomington, Chicago and finally College Park, Mary-
land. When he became ill, he returned to Lund and died here.

His brother. Marcel Riesz was one out of three brothers. An elder brother was the famous
F. Riesz (1880 - 1956). The third brother devoted himself to practising of law.

The general concensus among mathematicians seems to have been that F. was by far the
more powerful and influential among the two. But such judgements change with time and
perhaps we are now going to witnes a phase when the importance of Marcel Riesz’'s work is
being reevaluated. GAarding tells us ([ G21, p. 72) that during his last encounter with him -
Riesz was then already hospitalized - his thoughts wandered to this very subject.
"Remember", Riesz told Garding, "that I am just a brightly colored copy of my brother".

Stockholm period 1910 - 1925. Marcel Riesz came to Sweden in 1911 upon the invitation of

G. Mittag-Leffler. The two had met, apparently, in 1908 on the occasion of the ICM in Rome
and, as Riesz’s first mathematical subject was summation methods, Mittag-Leffler took a
liking for the young man. Remember that Marcel Riesz was only in his 20’s at the time.
Riesz had begun his studies in Budapest. After a shorter stay at G8ttingen, he had spent the
year 1910 - 1911 in Paris.

One of his first assignments in this country was to compile an index for the first 35
volumes of Acta Mathematica, as you know, a journal founded by Mittag-Leffler himself. As
a unique specimen in the mathematical literature, it contains a complete collection of

portraits of all the authors!



As Mittag-Leffler was already an aged man, Marcel Riesz soon became the leader of the
young generation of Stockholm mathematicians. His students from that period include names
such as Harald Cramér, known for his achievements in probability, who also later became
Chancellor of the Swedish universities (universitetskansler) - he died only recently aged 92
- and Einar Hille, a Swedish-American, born in New York, who had returned to his country
of origin to study mathematics; Hille, apparently, was underestimated in Sweden and ulti-
mately went back to the U.S. and ended up as a professor at Yale.

Addresses. Personaliae. Marcel Riesz address in Stockholm - D&belnsgatan S5 - is one of

the famous ones in the history of mathematics - it is here that he proves his celebrated
conjugate function theorem. In Lund he soon moves to Kivlingevagen 1, to live in on the top
floor of what was then and still is one of the most fashionable apartment buildings in town. I
have been told that the flat was originally intended for Nils Zeilon, who became a professor
in the same year as Riesz. But Zeilon had a large family so ultimately the flat turned out to
be too expensive for him. One of Riesz’s daughter Birgit Riesz-Larsson has after her own
retirement moved back there. The other (twin) daughter Margit Riesz-Pleijel is married to
my thesis advisor Ake Pleijel.

Competition. As you may know, in Sweden one has to compete for a professorship. In
19257 when Riesz applied for a professorship at Stockholm his competitors were Torsten
Carleman and Harald Cramér. Riesz lost to Carleman and had to content himself with a chair
at Lund. To become a professor at Lund, at the time, was considered, or at least Riesz
himself considered it as an exile. Is it still?

Scientific profile. Students. For Marcel Riesz his arrival in Lund means, scientifically

speaking, a watershed. Presumably through his contacts with Nils Zeilon, Riesz turned away
from classical analysis and became interested in p.d.e. and became thereby the founder of
the Swedish or Lund school in p.d.e. (GArding, Hérmander etc.). Zeilon is a name which is
little known in the mathematical community but GAarding has tried to reevaluate him on
several occasions (see e.g. his address to the 1970 ICM [G31). In the 1910’s Zeilon wrote
several penetrating studies on the singularities of hyperbolic equations but, being
published in an obscure Swedish periodical, their influence has been negligible. In
particular, he reached in this way an understanding of the physically important problem of
double refraction in crystals, a question where Sonja Kowalewsky, incidentally another one
of Mittag-Leffler’s "protégés", had grossly erred (actually by misusing the Cauchy-
-Kowalewsky theorem!; this issue has recently again aroused some controversy; see several
articles in the Intelligencer). Zeilon was also an amateur painter and painting seems to have
been one of his major activities in later professorial years. In contrast to Riesz, he never
had students.

As I have mentioned already, Riesz’s first mathematical field had been summation
methods, something that was very fashionable in the first decades of the century -
remember that L. Fejér was a Hungarian and in 1901 had proved his famous theorem on the
Cesaro summability of Fourier series. (It may well be that there will soon be a revival of

interest in summation; this is connected with advances on the numerical (computer) side;



see e.g. [Wil for a recent book on the subject.) But he also worked in classical function
theory - the F. and M. Riesz theorem is surely well-known to everybody - and on
trigonometric series, where he collaborated with Hilb on an Encyklopadie-article.

Then he invested some effort (ca. 1920) on another problem fashionable for the day, the
moment problem. In this connection he did some work in which he in a way anticipated the
Hahn-Banach theorem. However, by and large his achievements here fall into the shadow of
men such as Carleman and Nevanlinna, generally considered to be mathematicians of greater
stature.

Riesz’s contribution to mathematics from the Lund (or post-Lund) period is intimately
tied up with the work of his many talented students and associates. Before proceeding it

will be convenient to draw a chart, depicting some general trends.

summation methods (Hardy)
Stockhol{/function theory (Cramér, Hille)
trigonometric series (Hilb)

/%moment problem
e

RIESZ = interpolation (Thorin)
\p.d.e. (GaArding, HOrmander)
potential theory (Frostman)

Clifford algebras, singular
integrals (Horvath)

Among less known names, let me mention Carl Hylthén-Cavallius and Lennart Sandgren.
The former published some original work on positive trigonometric sums, while the latter
wrote on convexity and also a thesis on the Steklov eigenvalue problem; later he made a
career as a civil servant, ending up as "landshdvding" in "Kristianstads lan".

Riemann-Liouville integral. If one looks for a common denominator in Riesz’s work, there

is one thing par excellence that comes to ones mind and this is the Riemann-Liouville

integral of fractional integration:

X
e} _o 1 _ a-1
IM£kx) = == | (x - % T £yy dy (a« > 0,

which he came to investigate from various angles. He was, presumably, led to this through
his previous preoccupations with summation, where he had invented what he himself termed
the typical means and other people have begun to call the Riesz means. In terms of
integrals, rather than series, the basic fact (on the Abelian side) is that if f is a function on

the real line such that f(x) » A (as X » ») then, for any o« > 0, also
o oy e-1
[« L% f(y) dy » A

The Riesz method of summation has several advantages compared to the older Césaro



method. Riesz’s early work in this area is summarized in the Hardy-Riesz Cambridge tract
[HR] from 1915, which, however, due to war circumstances was mostly written by Hardy
alone; the two authors happened to be in opposite camps. During the war (World War D),
Riesz, still a citizen of Austria-Hungary, served at his country’s embassy in Stockholm.

Returning to the Riemann-Liouville integral itself, Riesz observed that the operators I
possess the semigroup property:

1%1P = 1978, 10 = identity.

Using analytic continuation (taking, at an intermediate stage, a to be complex, with Re o >
0) he could define 1% also for negative «. Especially, one has 1_1 = derivation, whereas I1 =
(indefinite) integration. It is curious that Gel’fand in the preface of the book [GS]
maintains that Riesz in this way became a precursor of distributions or, as Gel’fand himself
says, generalized functions; the name of L. Schwartz hardly occurs in [GS].

Riesz then goes on to generalizations in several variables. In particular, he defines the

generalized or Riesz potentials

Iap(x) = cq'n I Ix - )«'Ic“_n dp(y) (0 < o < n),

where ca,n is a suitable "gamma factor"”, for an arbitrary "mass distribution" p in rR"
(equipped with the Euclidean metric); if a = 2 (and n # 2) one has the Newton potential. Now
formally 1_2 = A = Laplacean. The subject was then followed up by Otto Frostman in his
famous 1935 thesis [F1, which still may serve as a most readable introduction to "modern"
potential theory. Frostman was a secondary school teacher for many years; from my own
boyhood I remember his characteristic profile on the yard of the Lund "Cathedral School"
(Katedralskolan; incidentally one of the oldest institutions of higher learning in
Scandinavia). When at last in 1952 (the very year of Riesz’s retirement) he obtained a
nomination as a university professor at Stockholm, his energy seemed to have been spent,
and he published little after that.

In another direction, one can define operators IO( generalizing the Riemann-Liouville
integral also in RnH equipped with the Minkowski metric. Then 1—2 = o = d’Alembertian.
Riesz could exploit this to give a treatment of the Cauchy problem for the wave equation.
Thereby he got a most elegant substitute for Hadamard’s "partie finie", used by the French
mathematician in his studies of general second order hyperbolic equations. Riesz’s
investigations in this area, dating from the 30’s, were published only much later in a truly
monumental Acta paper [R11].

The Riemann-Liouville integral recurs, for instance, also in a little known paper by
Garding [G41, where the author - prior to his later work on general higher order
hyperbolic equations with constant coefficients - investigates certain hyperbolic equations
related to Siegel’s generalized upper halfplanes. This is perhaps a matter into which one

ought to dig deeper, as Siegel halfplanes connect to such now popular issues as Jordan
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triple systems (JTS). It strikes me now also that a few years ago I pointed out a connection
between GAarding’s theory and the then freshly solved van der Waerden’s conjecture [P2].

Interpolation (for "aficionados" only). I come now to the topic which really has served as
the chief raison d’etre of this meeting. The first result about interpolation in the literature
is however the one by Schur (1911), which says, roughly speaking, that T: L‘1 > Ll, T: L” »
L” entails T: LP » LP (1 < p < w), that is, what we now understand as the "diagonal" case of
the Riesz-Thorin theorem. For some reason, this is a fact that never has established itself
as a genuine "theorem"; it is being "rediscovered" over and over again. Riesz is of course
fully aware of his predecessor, whom he duly quotes.

The road by which Riesz reaches his "convexity" theorem [R2] is curiously enough con-
nected with the conjugate function theorem, another of Riesz’s lasting contributions to
Analysis (discovered in 1923 but published only in 1927 [R31). For the real line, H denoting
the Hilbert transform, it simply states that H: LP 5 Lp, 1 < p < w. Riesz’s proof of this
result, reproduced many times before, goes, rougly speaking, as follows:

1) He proves it for p = 2, 4, 8,...

2) Then he "interpolates" to get it for 2 < p < @ (p not an even integer).

3) Finally, he applies duality to incorporate the case 1 < p < 2 as well.

It is thus the middle step when generalized, which is the genesis of the whole discipline
of (abstract) interpolation.

As for step 1, the case p = 2 is trivial. If, for instance, p = 4 the argument is the
following. By Cauchy’s theorem IR f4 dx = 0 where f = u + iv is an analytic function in the
upper halfplane with v = Hu on the boundary R. Expanding and taking real parts, one gets
the identity

Ju4—6Iu2v2+Iv4=0.

From this, using again Hdlder’s inequality, to take care of the middle term, one then readily

obtains ||v||4 < c||u[|4. For p a general even integer, the proof is analogous.



Riesz tells himself how he hit on this argument. He intended to give the (trivial) case p =
2 as a problem to a student (not one of the famous ones!) in an examination and, as he
suspected that the poor man did not know Plancherel’s theorem, he began to think if there
was not an alternative route... Whence Hardy’s laconic comment ([C], p. 502): "Your
student’s life is not entirely without value (though I suppose he will never understand
why)."”

Nowadays the conjugate function theorem is subsumed in the Calderém—Zygmund theory of
singular integral, thus real variable theory. But in questions of obtaining sharp estimates of
the constant, the function theoretic approach, thus having its origin in Riesz’s work, still is
of importance; see e.g. [E1], [E2] for a recent contribution.

In [P3] I gave a "contemporary" version of Riesz’s original proof of his interpolation
theorem, interpreting it in terms of a suitable interpolation method, the "Riesz method".
Can other known proofs of Riesz’s theorem, e.g. the ones by Paley or the one by Thorin (see
[Th2], appendix and [Th31), be given a similar reinterpretation?

The extension to the whole square was open for some time and Riesz himself seems to
have been of the opinion that this was not possible (probably because of an example in
[R21). Therefore, Thorin’s proof [Th1] in 1939 of the full Riesz-Thorin theorem which also
forms the basis for Calderdn’s complex method of interpolation, came as a surprise to
everybody. Littlewood alludes to Thorin’s achievement as "the most impudent idea in
mathematics" ([LJ], p. 1). Olov Thorin, who is an utterly modest man, has himself described
in detail the process of discovery [Th3]. Apparently, it was a cursory remark of
Frostman’s that triggered him off. In his 1948 thesis [Th2] Thorin independently proves
also Sobolev’s theorem about the Lp—continuity of the Riesz potentials (the n-dimensional
version of a theorem by Hardy-Littlewood). Most of his life he worked as an actuary - Riesz
too served as a consultant for Swedish insurance companies - but upon his retirement he is
reported to have said: "Now at last I am free to do mathematics!" His name is well-known to
probabilists and he has done important work on {.d.r.v. (cf. [BP1).

Clifford algebras. Sinqular inteqgrals. In his later life Marcel Riesz worked on somewhat

more esoteric subjects. I shall bypass here his preoccupations with number theory and
"pure" algebra, concentrating instead on "geometry". Riesz, apparently, was always
fascinated by the internal beauty of geometry, in particular, the interplay between geo-
metry and "physics" (relativity, quantum mechanics). In particular, he tried to promote the
use of Clifford numbers in Analysis, notably in connection with the Dirac equation. At the
time, people did not think very highly of this. At least, his Maryland notes [R41 got a bad
review [Til. But, as we have seen before, customs change even in such a conservative
science as ours.

An 2n—d1mensional Clifford algebra C is an algebra with generators eyreere subject to
relations ei2 = &, eiek + ekei =0 (i # k). Then, formally, a solution § (with values in a

suitable C-module) of the equation



will have the property that each component is a nullsolution of the "wave" operator
z :azpz/axf = 0. Whence the connection with Dirac’s theory. If we add one more variable xo,

taking e, = 1, we get a generalization of the Cauchy-Riemann equations, which leads to a

generali(z)ed function theory based on the notion of "monogenic" function (cf. e.g. the mono-
graph [BDS]). Monogenic functions have recently atracted a lot of interest. For instance,
they have been used in the context of singular integrals (see e.g. [Mcll). The famous Riesz
transforms (generalizing the Hilbert transform in the case of one variable) presumably also
arose in this context (see [H2]). Later they came to be the substratum of the Fefferman-
-Stein-Weiss theory of generalized HP spaces [FS1, [SW].

At the ’83 Lund conference Svante Janson and I suggested [JP], in an attempt to
generalize Calderén’s method, to use, instead of analytic functions in a strip (or a disk) in
the complex plane, harmonic vector fields in an analogous domain in Rnﬂ, and similar
considerations can be made more generally with Clifford numbers. The Thorin construction,
in the original LP context, basically uses only the properties of one special function, the
exponential. If one could find a suitable Clifford analogue of the exponential, perhaps one
could do something... I wonder what Marcel Riesz himself would have said had somebody in
his lifetime pointed out to him this connection between two apparently quite separate
aspects of his work.

Conclusion. Compared with other great mathematicians of the past, Marcel Riesz
published relatively little and, as we have seen, often with a great delay. This has in part
to do with his personality, about which I have said very little. Above all, he was a per-
fectionist. Let me conclude with a piece of happy news. After many years of delay, his
collected works will now be published by Springer-Verlag, with Lars H3rmander as editor.

The sponsors are N.F.Riesz - the same as for this conference - and the Swedish Actuarial

Society, this as a tribute to his toils in actuarial mathematics.
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INTERPOLATION OF TENT SPACES AND APPLICATIONS
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In a series of papers [CMS] , [CMS1] , Coifman, Meyer and Stein have studied a
new family of function spaces, the so-called "tent spaces." These spaces have proved
to be useful for the study of a variety of problems in harmonic analysis. Moreover,
their study has led to interesting simplifications and refinements of some basic
techniques of real analysis. In particular we mention the results of [CMS1] con-
cerning the Cauchy integral on Lipchitz curves, the natural and simple approach to
the atomic decomposition and interpolation theory of HP spaces (cf. [CMS1]) and
the connection with the theory of Carleson measures (cf. [CMS1] , [AM] , [BJI]).

Tent spaces on product domains (cf. [AM]) have been used in [GM] to settle the
problem of describing the complex interpolation spaces between HP and BMO on
product domains. We also mention the authors' work on vector valued tent spaces and
their duality and interpolation properties (cf. [AM1]). An interesting consequence
of this development is a generalization of the Lions-Peetre interpolation theorem of
vector valued LP spaces to the setting of vector valued HP spaces.

These papers also provide applications to the study of maximal operators, square
functions, balayages, weighted norm inequalities....

In this note we survey results concerning the interpolation theory of tent spaces
and spaces of Carleson measures. The plan of the paper is as follows: the first
three sections give the definition and basic properties of tent spaces and spaces
of Carleson measures, §4 treats the interpolation theory of spaces of Carleson
measures, 55 and §6 provide the real and complex interpolation of tent spaces.

In particular §6 includes a Wolff type theorem for Quasi Banach lattices (cf.
[GM1]), 57 provides an application to the interpolation theory of HP spaces,
while §8 contains a brief synopsis of tent spaces on product domains, vector valued
tent spaces and further applications.

1. The Tg spaces

2+1 but most of the results can be stated in the more general
context of homogeneous spaces. Points in R2+1 shall be denoted by (x,t) or
(yo»t) » x,y eR", t >0 . Given x ¢ R", let T'(x) denote the cone {(y,t)/|x-y|
<t} . Let Q be an open set, Q=R" , we Tet T(2) ("the tent over Q ") be the
subset of R2+1 defined by T(Q) = {(x,t)/B(x,t) € @} , where B(x,t) denotes the
ball with centre x and radius t .

We shall work in R
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The tent spaces Tp », 0<pgeo, 0<qgg =, are defined using two families of
functionals. The A funct1ona1s defined by

1/q
q (I fly.t) | n+1 (1.1)

>
—
-4
~
—
x
~—
]

by
—
i
N
—
=
=
]

¥ sup |f(y,t)] (1.1)"
r'(x)

The Cq functionals given by

l/q
= 1 q dydt
C (f)(x) = sup{ fly,t } 1.2
A(F)(x) me(gB)Hy TR (1.2)
where the sup 1is taken over all balls containing x .

The tent spaces Tg , 0<p, g<= are defined by Tg = {f/Aq(f) € Lp(Rn)} 5
and we Tet ||f|| p = [lA (f)ll . The case g == and p <= requires a natural

n+1

modification: TZ will denote the class of continuous functions in R such that

A_(f) Lp(Rn) and such that 1im_||f_ - f[}Tp = 0 , where fE(x,t) = f(x + e,t) ,
e*0  © ®
and [lf||Tp = ||Am(f)|[p . Finally the T: spaces (g < =) , are defined by the

condition Cq(f) e L” and I[f]|Tm = [Icq(f)l]w

It is readily verified that the Tg spaces are complete and that for 1 g p,

qs « , the Tg are Banach spaces.

2. Spaces of Carleson measures
n+l

For measures on R we can also consider variants of the A1 and C1 func-
tionals. For a measure w on Rn+1 we define
Al(w)(x) =.{. t” d]w[ y,t) (2.1)
T(x) ~f
1
C,(w)(x) = sup dlw|(y,t) (2.2)
1 B3x 1BI7(p)

For 0 <0 < 1 the spaces VO of Carleson measures of order © (cf. [AB])
consist of those measures w such that for some C > 0

[w|(T(2)) < C[Qle ¥ 2 open in R" (2.3)
We Tet

liwll 5 inf{C/ (2.3) holds ¥ o open, 2 €R"}

It 1svalso convenient to define VO {wlw finite measure on R
9 can be also characterized in terms of the A1 functionals (cf.

™l

The spaces V
[AB]):

%= iAW) e gk (2.4)

It is shown in [CMS1] that

(th* = ! (2.5)
The duality result (2.5) is a consequence of the basic inequality valid for Carle-



