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PREFACE

We have witnessed during the past decade a tremendous
resurgence of interest in atomic radiative processes. A major reason for this
is the laser, which has become an invaluable tool for investigating the inter-
action of radiation with matter. The laser not only made it possible to refine
and improve a number of classic experiments, but also extended the appli-
cations to a variety of new nonlinear processes. A prime example is the
dynamic Stark effect in which the atom interacts with a strong coherent
field during many absorption—emission cycles. The resulting frequency
distribution of emitted radiation exhibits sidebands that are not present
when broadband radiation is used.

This book is a much revised and expanded version of a series of lectures
I gave at the Swiss Institute of Technology in Lausanne, Switzerland. The
purpose of the course was to give the students a unified treatment of classical
and quantum-mechanical radiation theory together with the description
of atomic radiative processes. I have attempted to make the presentation
as self-contained as possible. In the derivations all of the essential steps
are included and only trivial or straightforward connections are omitted.
The development is a gradual one with fairly simple treatments at the begin-
ning and more complicated ones toward the end. This is a theoretical book,
and only a few experiments are considered in detail. In a couple of cases 1
have analyzed an experiment in order to illustrate the theory and to show
how the equations relate to experimental results. The reader is directed to
a number of review articles in which the experimental aspects are covered.

The book is intended for use in a two-term course. For advanced stu-
dents some of the introductory chapters may be omitted and a one-term
course structured from the last few chapters. The book may also profitably
be used by the researcher who wants to calculate a specific process in detail
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xii Preface

and who is interested in predicting experimental results. The unified treat-
ment of the subject matter should make it easier to compare processes and
to extend the theory to new ones.

In the first two chapters, some of the properties of the classical field
and its interaction with particles are described, focusing on those aspects
needed for a better understanding of the quantum theory. The Hamiltonian
formalism is used in order to be able to quantize the field by making only
minor modifications. The density of states of the radiation field and the
Hamiltonian for the interaction between the field and the particles is also
considered.

The theory of atomic radiative processes described in this book relies
heavily on the use of Fourier transforms. They are powerful tools in
obtaining solutions of time-dependent Schrodinger equations. Coupled
differential equations are transformed to coupled linear equations that in
most cases can be readily solved. In addition, the description of the trans-
forms in the complex plane gives a great deal of information about the
interaction of the radiation field with the atom. In particular, an analysis
of the poles of the transforms yields decay rates and frequency shifts. In
Chapter 2 a few Fourier transform techniques are introduced and applied
to such areas as coherence properties of the field and amplitude and intensity
correlations. Many of these classical methods can also be used effectively
in the quantum theory.

In Chapter 3 a brief review of the theory of angular momentum is given.
The results are useful for evaluating matrix elements and angular momentum
selection rules. The properties of irreducible tensors are also discussed.
These are used in the expansion of the interaction Hamiltonian, which
separates the terms that contain atomic parameters from those that involve
the properties of the radiation field.

The quantization of the radiation field is considered in Chapter 4. The
system of photon states is derived, and a few of their properties are dis-
cussed. The description includes coherent states and their connection with
the classical field.

Chapter 5 briefly reviews the description of atomic and field states and
their properties in the interaction representation. The contents form the
basis for the calculation of amplitudes and probabilities.

The interaction of a two-level atom with single modes of the radiation
field is treated in Chapter 6. A convenient way to describe the interaction is
to “dress” the atom with the photon states. The procedure allows a much
clearer understanding of the evolution of the system. The Fourier trans-
form techniques developed in Chapter 2 are used in describing the coupling
of an atom with both rotating and linear fields. Probabilities are calculated
by solving amplitudes as well as density matrix equations. The interaction
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of the atom with the linear field yields a number of interesting results in-
cluding frequency shifts and multiphoton resonances.

A fairly complete description of spontaneous emission is given in Chap-
ter 7. The presentation starts with Einstein’s phenomenological theory,
continues with a more accurate description by Weisskopf and Wigner, and
is completed with the Fourier transform method applied to both amplitude
and density matrix equations.

In Chapter 8 a variety of decay processes are discussed. The techniques
and results of the previous chapters are applied to a description of the
evolution of coupled atomic states and the frequency distribution of emitted
radiation.

The analysis is extended in Chapter 9 to include radiative excitation.
Resonance fluorescence with weak incoherent fields is discussed first. The
calculation is applied to level-crossing and level-anticrossing effects as well
as to optical double resonances. The presence of strong monochromatic
radiation leads to a more complicated interaction. The atom goes through
many absorption—emission cycles, and the frequency distribution of scattered
light shows new features that are due to the coupling of the different cycles.
The description of the “dressed’” atomic states gives again a good qualitative
explanation of the results.

I have purposely kept the reference lists compact. Entries fall into four
categories: (1) references of historical interest, (2) books that treat related
subject matter in detail, (3) review articles, and (4) references that are per-
tinent to the presentation.

No attempt has been made to cover all approaches to atomic radiative
processes. In many cases there are other methods that use different mathe-
matical tools. The omission of an alternate method does not reflect on its
merits. The theory developed here is simply one way to cover coherently a
rather incoherent subject.
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CLASSICAL
ELECTRODYNAMICS

1.1 FORMAL DEVELOPMENT

The calculation of atomic radiative processes requires a description of
the atom, the radiation field, and the interaction between the bound elec-
trons of the atom and the field. Both the atom and the radiation field are
quantized. The quantization of the atom can be accomplished by quantizing
the total action of the system and by examining the Hamilton-Jacobi equa-
tion of motion in terms of a series of canonical transformations. The “optical”
description of the motion of the generating function leads to the Schrédinger
equation for the atom (1.2). The quantization of the radiation field can also
be done in a straightforward manner by replacing the classical Poisson
brackets of the field components by quantum mechanical commutators.
All other aspects of the quantized radiation field can be readily obtained
from the classical one. In particular, the quantized version of the vector
potential and therefore also of the electric and magnetic fields is very similar
in structure to the corresponding classical expressions. The change from the
classical to the quantized results can be made by replacing the term that
gives the time dependence of the fields at some point in space by an operator
that does not depend on time. The spatial dependence of the field quantities
is not affected by the quantization procedure. Only those elements of the
classical theory that are used in the development of the quantum theory
are presented.



2 1. Classical Electrodynamics

The basic equations describing electrodynamical processes are Maxwell’s
equations together with the Lorentz force. In the absence of dielectric or
magnetic media, these equations are

V-E = p/e, (1.1)
V:-B=0 (1.2)
VxE+a—B—0 (1.3)
ot '

1 E .
ﬂ—OVxB—s(,E—] (1.4)

where E and B are the electric and magnetic fields, respectively, p the electric
charge density, and j the electric current density.

The force acting on a particle with charge e at position r moving with
velocity v is given by

F = e[E(r) + v x B(r)] (1.5)

The equations are written in rationalized MKS units. In this system the
common units (volt, ampere, coulomb, etc.) are incorporated. The force on
a charge ¢, at position r, due to another charge e, at position r, is

&%
4rmey 13,

(1.6)

where r;, = r, — r,. Similarly, the interaction between currents is given by

J‘J‘ ji (Jz XT;,) dr, dr, (1.7)

"12

where the integrations are over the regions of nonvanishing current densities
j; and j,, respectively. If one takes the divergence of Eq. (1.4) and uses Eq.
(1.1), one obtains the continuity equation

p .
S H V=0 (1.8)

In taking the divergence one assumes implicitly that the fields are smoothly
varying in space and time. Since the divergence of B is zero [Eq. (1.2)], one
can assume the existence of a vector potential such that

B=VxA (1.9)
This allows us to write

E— _‘E — V4 (1.10)



