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Preface

THE aM of this book is to provide an intelligible introduction to
functional analysis by giving samples of its applications to numerical
analysis. I have been very much helped in my attempt to select
topics of practical value by discussions and correspondence with
mathematicians in the University of Lancaster, Brunel University,
the University of Bristol, the University of Glasgow, the University
of Strathclyde, and the University of Exeter. For this help I should
like to express my sincere thanks.

34 Pretoria Road,
Cambridge.
July 1977



Notes on symbols and terminology

For coNcepTs not mentioned here, see the general index.

—, (i) ‘tends to the limit’, (ii) ‘maps to’, e.g. ‘input — output’.
=, ‘identically equal’. An identity, f(x)= g(x), indicates that the
functions have the same values for all relevant x.

=, ‘approximately equal’.

~, see section 8.4.

!, factorial; n!'=n(n—1)(n—2)...3%x2x1.
A, finite difference operator, ‘the change in’.

D, differentiation operator, d/dx.

In, natural logarithm, log..

P,(x), Legendre polynomial, section 8.4.

T,(x), Chebyshev polynomial, section 8.4.

[a, b], the closed interval, corresponding to a <x<b, in contrast
to the open interval, (a, b), corresponding to a <x <b.

R, the real numbers

C, the complex numbers.

€, ‘belongs to’. Thus, xe R means ‘x is a real number’. Note that
€ is not the same symbol as the Greek epsilon, &, traditional symbol
for a small, positive number.

{:}, a collection of objects satisfying a condition. Thus {x:x >0}
means ‘the positive numbers’ and {(x, y):x*+y>=1} means ‘the
collection of points for which x>+ y>= 1", that is, the unit circle.
max{:}, the maximum, the largest number in the collection indi-
cated.

min{:}, the minimum, the smallest number in the collection.

sup{:}, the supremum, the ‘ceiling’ of the collection, that is, the
smallest number not exceeded by any other in the collection. Thus
sup{1/2,2/3,3/4,...,n/(n+1),...} is 1. We cannot use ‘max’ here,
since there is no largest number in this collection.

inf{:}, infimum, the ‘floor’ of the collection.



X Notes on symbols and terminology

majorant, something known to be larger than the object under
investigation.

>, ‘implies’, e.g. ‘x=—5>x>=25" means ‘if x=-35, then x*=
25°.

&, connects statements, each of which follows from the other, e.g.
2x=10&x=5.

¢, ¢, €., see section 2.3.

&5
%¥,, section 8.3.
€[a, b], section 3.3.

Z, ¥, ¥, symbols for spaces.

section 4.1.

B(Z, %), the space of bounded, linear operators, ¥ — %, section
5.3.
Z*, the space dual to &, section 10.1.

R", vector space of n dimensions with real co-ordinates. If u=
(uyy...,u,) and v=(vy,...,v,) are in R" then u+v=
(u;+vy,...,u,+v,) and, for any number, k, ku = (kuy, ..., ku,).
&€", Euclidean space of n dimensions.

u- v, scalar product in €3, sections 8.1 and 9.1.

(u, v), generalization of u - v, chapter 8.

Perpendicular projection. If PM 1 OMQ, the vector OM is called the
perpendicular projection of the vector OP onto the line OQ.

||, absolute value; the magnitude of a number, irrespective of its
sign, e.g. |=7|=7|=17.

[PQ|, the length of the line segment, PQ. Its generalizations;
vector norm, ||v||, section 3.2; |[v]|,, norm of a vector in €,; operator
norm, ||A|, section 5.2; function norm, |f]|, section 3.3; norm in %,,
(Hilbert space), section 8.3; [[A[|,, norm of an operator A, €, — ¢,
or ¢,— R.

d(P, Q), the distance of P from Q.

S(P, r), the sphere, B(P, r) the open ball.

B(P, r), the closed ball, in each case with centre P and radius r.
See section 2.3.

I, the identity operator or matrix, ‘leave everything as it is’.



Notes on symbols and terminology xi

A~', the operator or matrix inverse to A. When A~ exists,
A 'A=AA '=1I See section 5.6.

Invariant line. A line such that every point on it maps, under a
specified linear transformation, M, to a point of the same line.

Eigenvector. A non-zero vector, v, lying in an invariant line; it
satisfies the equation, Mv = Av, for some number A.

Eigenvalue. The number, A, mentioned in the definition of eigen-
vector.
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1 A first course in functional analysis

IN THE introduction to his book, Functional analysis and numerical
analysis, L. Collatz said that numerical analysis had been revo-
lutionized by two things—the electronic computer and the use of
functional analysis.

This statement is striking not only for its emphatic tone but also
for the contrast of mathematical epochs it involves. Numerical
analysis is an earthy subject concerned with questions involving
numbers. Even if it uses very sophisticated modern equipment,
essentially it is concerned with arithmetic, the oldest branch of
mathematics, whose beginnings lie in prehistory. Functional
analysis, on the other hand, while it has roots in nineteenth century
mathematics, is a product of the present century.

In trying to cope with such a modern branch of mathematics, a
student of numerical analysis encounters two difficulties. Any part of
modern mathematics is the end-product of a long history. It has
drawn on many branches of earlier mathematics, it has extracted
various essences from them and has been reformulated again and
again in increasingly general and abstract forms. Thus a student may
not be able to see what it is all about, in much the same way that a
caveman confronted with a vitamin pill would not easily recognize it
as food.

The second difficulty is that functional analysis was not created
with numerical applications in view. It arose from a great variety of
sources—from the calculus of variations, from integral equations,
from Fourier series, from mechanics, from the theory of real and
complex variables, from number theory, and from other topics. It
therefore has a great range of possible applications and a student
cannot assume, because a theorem in functional analysis is generally
regarded by mathematicians as of great importance, that it will
necessarily help us in problems of numerical analysis.

The aim of this book is to make some contribution towards
overcoming these two difficulties—by explaining the ideas of the
subject and, as far as possible, by emphasising those ideas that have
proved useful to numerical analysts. In the main the concepts of
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functional analysis will be introduced by discussing problems in
numerical analysis from which these concepts could arise. Refer-
ences will be given so that readers can go back to original sources to
clear up any obscurity or to judge for themselves the relevance of
the topic to their own interests. A reference such as (Smith, (3), p.
42) would indicate page 42 of the third paper by Smith in the list of
references at the back of the book.

Also at the front of the book will be found a list of symbols and
words used, with their meanings.

This list should be consulted if any unfamiliar word or symbol is
encountered. It seemed better to arrange things this way, rather
than to risk wearying readers by explaining in the body of the book
matters which were already familiar to them. Indeed at present it is
extremely difficult to know what is familiar. This is partly owing to
the separation of school programs into modern and traditional, and,
at a deeper level, to the fact that mathematics is becoming so varied
that it is no longer possible to assume that some agreed core is
known to all students of mathematics.

In many schools, a modern course, such as S.M.P., is sup-
plemented by more traditional material, designed to give facility in
algebraic manipulation. This is probably the ideal background for
our subject. This book does assume some acquaintance with vectors
and matrices. Students with a traditional background (which they
will find an asset in this work) may find it helpful to consult the
S.M.P. ‘transitional’ books, published at a time when schools were
just beginning to move from the older to the newer syllabus. The
introduction to matrices in S.M.P. Book T.4 is perhaps better than
anything in the later S.M.P. publications.

It is not too difficult for someone who has a good understanding
and command of traditional algebra and calculus to acquire the
more modern concepts. This is perhaps because the later develop-
ments grew on the foundation of the earlier ones. Students who are
in the opposite position, of having the more recent concepts, but not
feeling comfortable with the older topics and skills, will probably
find it harder to adjust and establish a correct balance of new and
old. Students, who find difficulty with the manipulative aspects of
the work, should consult, and above all work exercises from, books
of an earlier period when such skills were emphasized—often to
excess.
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1.1. ‘Soft and hard’ analysis

There is a custom among mathematicians of referring to classical
analysis as ‘hard’ and modern analysis as ‘soft’. Students may not be
surprised to hear nineteenth-century analysis described as hard, but
one would expect the twentieth-century analysis that followed it to
be more advanced and even harder. The explanation of this ter-
minology is along the following lines. Classical analysis frequently
involved long chains of reasoning and calculation. Mathematicians
tried to simplify it by disentangling the various strands involved in it,
in order to find simplicity underlying the complexity. The real
numbers have many properties;—algebraic properties, properties
concerned with limits, order properties such as that 3 comes before
10 when we count. An effort was made to separate these and to see
what could be said about a mathematical structure if you knew only
its algebraic properties, or its order properties, or its behaviour in
regard to limits. Such studies, concerned only with one aspect of the
real numbers, were naturally simpler than the older work that dealt
with all aspects simultaneously. Sometimes they did not involve
calculation at all. As P. J. Davis said, functional analysis ‘loves soft
analysis and avoids hard analysis like the plague; its ideal proof is
wholly verbal’ (see Hayes, p. 160).

The advantage of soft analysis, besides its relative simplicity, is its
generality. One of the main features of mathematics in the last
century has been the gradual realization that the theorems and
procedures of algebra and calculus apply not only to the real and
complex numbers, but to a wide variety of other objects, including
several that are of great interest to numerical analysts. All the work
of this book will illustrate this theme.

Ideas of great generality are extremely valuable, but they are
hardly ever sufficient, by themselves, for dealing with a particular,
concrete situation. Soft analysis therefore is a supplement to, not a
substitute for, hard analysis. Soft analysis, as we have just seen,
grew from classical analysis and revealed wider applications of the
older ideas. It therefore binds together our knowledge of different
topics and reduces the strain on the memory. Instead of learning
disconnected facts about unrelated objects, we can take a classical
theorem or procedure and see it operating again and again in
different environments. The organization of this book corresponds
to that idea. We shall take in turn concepts or theorems of classical
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mathematics, briefly review their role in their original setting (real
or complex numbers) and then see to what other situations they can
be applied.

Functional analysis helps us also by providing a way of visualizing
what we are doing. The whole language of the subject is in terms of
‘spaces’. This means that we are able to use geometrical and
pictorial imagery in situations that, at first sight, appear to have
nothing to do with geometry.

What has been discussed so far may be called the inherent
benefits of functional analysis. Functional analysis has also acquired
a social value—it has become necessary for communication. Books
on numerical analysis, even when using classical methods, often
express these in modern terminology. For instance Cheney, on page
85 of his well known book, Introduction to approximation theory,
discusses the problem of finding a polynomial that closely approxi-
mates a given continuous function. The argument is purely classical,
involving inequalities for real numbers. The terminology however
involves two items that are not classical; functions are defined on ‘a
compact metric space’ and the algebra repeatedly uses ||P||, the
symbol for a norm. To follow the argument on this page, a student
needs only to know the meaning of these concepts and their most
elementary properties.



2 Old ideas in new contexts

2.1. Examples of iteration

As Has already been indicated, we plan to extend several concepts
of classical analysis so that they become available for a wider range
of applications. A frequent object of such applications is the process
of iteration, one of the most valuable and widely used methods of
calculation. It is therefore helpful to look at a few examples of
iteration, in order to see something of the variety that this process
covers.

Example 1. The idea of iteration is extremely old and is implicit in
Zeno’s paradox of Achilles and the tortoise (B.C. 500). The tortoise
is given unit distance start but Achilles moves ten times as fast.
When Achilles has covered a distance x, the tortoise is at the point
where t=1+(0.1)x. Initially x =0, t = 1. When Achilles has reached
the tortoise’s initial position, x =1, but by then r=1.1. When x is
raised to 1.1, t has become 1.11 and so the argument continues. Its
effect is to produce a sequence of x-values, say x;, x,, X3, ...with
X1 =1+(0.1)x,. As n—x, x, approaches the solution of x=
1+(0.1)x.

Example 2. In any application of iteration convergence has to be
considered. We would of course get disastrous results if we tried to
solve x =1+3x by the iteration x, ., = 1+ 3x,, which would lead to
+oo rather than —0.5.

Example 3. It is not necessary that the equation should be linear.
If we take x,.,=3/(x, +10) with x,=0, six iterations are sufficient
to give 0.291 502 622 as a solution of x*+10x—3=0.

Example 4. If we perform the iteration
Xpi1 =Xy, +x,+0.07
Va1 =X2+y2+y,—0.41
with initial values x,=0, y,=0, about twenty iterations are suffi-

cient to give x =0.111 002 285, y=—-0.630 617 546 as an intersec-
tion of the curves xy =—0.07, x>+ y?>=0.41.
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Needless to say, this is not offered as an example of practical
value. The examples in this book have been kept within the capacity

of a pocket-size programmable computer. In a serious, real-life
application there might well be a hundred equations in a hundred

unknowns.

Example 5. The function f(x)=e * satisfies the integral equation

f(x)= l—ff(z) dt.

It can be obtained by the iteration
o =1 [ f,0 .

If fo(x)=0, fi(x)=1, folx)=1-x, fi(x)=1—x+(x?/2) and so on.
The terms of the series for e ™ gradually appear.

Here again we have taken a very simple example from a very
wide class. A classical method for dealing with integral equations of
the form

Flx)= g<x>+j K(x, y)f(y) dy,

where g(x) and K(x, y) are given, is to apply iteration to determine
f(x). The solution then appears as a series known as the Neumann
series.

Example 6. The integral equation in example 5 is a linear integral
equation. It is not necessary to restrict ourselves to this type. If we
have the equation

f<x>=x+[ LA di
)
and use the iteration

f.,+.(x)=x+f[f<z)]2 di
0D

with fy(x)=0 initially, we find f,(x)=x,
f2(x)=x+(x/3), fa(x)=x+(x*/3)+(2/15)x+(1/63)x".
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In fact f(x)=tan x is the solution of our equation, and in the nth
iterate, f,(x), the first n terms coincide with the Taylor series for
tan x.

These six examples differ in the material they involve. In the first
three examples we are concerned with a single number, x; example
4 deals with a pair of numbers (x, y) which may be considered as
representing a point in a plane; examples 5 and 6 are concerned
with functions of a single variable. But it is clear these examples
have something in common, and this is particularly evident if we
imagine the iteration being carried out by a computer. In each case
there is a sub-routine which is applied again and again, the output of
each stage becoming the input of the next. All our examples can be
expressed by a single symbolic form. If T denotes the sub-routine
and ¢, the initial input, we have successive outputs ¢, ¢,,
G5 ... with ¢, = To,, ¢,= Te,, and so on. We may write ¢,, = T"¢,,
to indicate that the nth output is obtained by applying »n times the
process T to the initial input ¢,.

When we study iteration from the viewpoint of functional
analysis, we are not concerned about the nature of the objects ¢,.
They may be numbers, vectors, matrices, functions, or maybe some-
thing else altogether. We are trying to discover properties that relate
to the process of iteration and that can be used, in a wide variety of
circumstances, to distinguish cases, like example 2 above, in which
iteration leads to a disaster, from those in which it proves reliable.
You may well doubt whether such a theory is possible and indeed if
we took it in its most general form—a study of all repeatable
operations—there would indeed be little to say. What has happened
historically is that particular examples of successful iteration were
found before any general theory was envisaged. From this experi-
ence of successful iterations mathematicians managed to winnow
certain general theorems and principles to guide them in their future
work. It is with such results that we shall be concerned.

2.2. Functions, ancient and modern

The present use of the word function is in most respects much
wider than it was in former times, though in one respect it is
narrower. Three centuries ago an equation y = f(x) would have
implied that x and y were numbers, and that the calculation giving y
in terms of x belonged to a class that was conventionally accepted.



8 Old ideas in new contexts

In nineteenth-century work on complex variables, a large, and very
beautiful, part was played by many-valued functions, for example
y = f(x) being defined by y*= x. At the present time the first type of
restriction has disappeared entirely. It is no longer required that x
and y in y = f(x) be numbers, nor is there any restriction on the
kind of calculation or rule that leads from x to y. But the term
many-valued function has been discarded; the one stipulation that is
made is that to an acceptable input, x, there is one and only one
output, y.

In all the six examples of iteration, the symbol T thus represents a
function, for in each of these examples the input determines without
any uncertainty the output.

At some stage of life this must involve a student in some mental
readjustment. A student in the sixth form, who has been asked to
give an example of a function, might mention f(x)=sin x or f(x)=
x>. It would probably cause some surprise if the student mentioned
the operations of integration and differentiation. Yet, with modern
usage, such a suggestion might well be justified. Suppose, in order to
avoid analytical complications, we agree that the acceptable inputs
are to be polynomials. To any input, P(x), the operation of differen-
tiation makes correspond one clearly defined output, P'(x). Equally,
if by integration we understand the calculation of some definite
integral, this operation too defines a function; to any polynomial
input, P(x), there corresponds without any uncertainty or ambiguity
the output [§ P(x) dx.

Functions are often indicated by the symbolism of an arrow. Thus
instead of f(x)= x* we may write f: x— x?. This indicates that when
the input is any number x, the output is the square of that number,
x?. This type of symbolism is also used for another purpose, to
indicate the kind of things that occur as inputs and outputs. Thus, if
our example of squaring is concerned with real numbers, we may
write f: R— R, where R is a rather pretty symbol used to indicate
the real number system. This indicates that the input and output are
real numbers.

In the same way, for the function D that represents differentia-
tion, we may define D by writing D: P(x)— P'(x). We may also
indicate that the input and output are assumed to be polynomials by
writing D : polynomial— polynomial.

Some authors like to use different kinds of arrows for these two
purposes. This will not be done in this book. Notation becomes an
obstacle rather than an aid to learning when it becomes fussy and



