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Preface

Students are often surprised when they first hear the following definition: A
stochastic process is a collection of random variables indexed by time. There
seems to be no content here. There is no structure. How can anyone say
anything of value about a stochastic process?” The content and structure
are in fact provided by the definitions of the various classes of stochastic
processes that are so important for both theory and applications. There are
processes in discrete or continuous time. There are processes on countable
or general state spaces. There are Markov processes, random walks, Gauss-
ian processes, diffusion processes, martingales, stable processes, infinitely
divisible processes, stationary processes, and many more. There are entire
books written about each of these types of stochastic process.

The purpose of this book is to provide an introduction to a particularly
important class of stochastic processes — continuous time Markov processes.
My intention is that it be used as a text for the second half of a year-long
course on measure-theoretic probability theory. The first half of such a
course typically deals with the classical limit theorems for sums of inde-
pendent random variables (laws of large numbers, central limit theorems,
random infinite series), and with some of the basic discrete time stochastic
processes (martingales, random walks, stationary sequences). Alternatively,
the book can be used in a semester-long special topics course for students
who have completed the basic year-long course. In this case, students will
probably already be familiar with the material in Chapter 1, so the course
would start with Chapter 2.

The present book stresses the new issues that appear in continuous time.
A difference that arises immediately is in the definition of the process. A
discrete time Markov process is defined by specifying the law that leads from
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X Preface

the state at one time to that at the next time. This approach is not possible
in continuous time. In most cases, it is necessary to describe the transition
law infinitesimally in time, and then prove under appropriate conditions that
this description leads to a well-defined process for all time.

We begin with an introduction to Brownian motion, which is certainly
the most important continuous time stochastic process. It is a special case
of many of the types listed above — it is Markov, Gaussian, a diffusion, a
martingale, stable, and infinitely divisible. It plays a fundamental role in
stochastic calculus, and hence in financial mathematics. Through Donsker’s
theorem, it provides a framework for far reaching generalizations of the clas-
sical central limit theorem. While we will concentrate on this one process in
Chapter 1, we will also discuss there the extent to which results and tech-
niques apply (or do not apply) more generally. The infinitesimal definition
mentioned in the previous paragraph is not necessary in the case of Brown-
ian motion. However, our discussion of Brownian motion sets the stage for
the setup that is required for processes that are defined in that way.

Next we discuss the construction problem for continuous time Markov
chains. (The word “chain” here refers to the countability of the state space.)
The main issue is to determine when the infinitesimal description of the
process (given by the @-matrix) uniquely determines the process via Kol-
mogorov’s backward equations.

With an understanding of these two examples — Brownian motion and
continuous time Markov chains — we will be in a position to consider the
issue of defining the process in greater generality. Key here is the Hille-
Yosida theorem, which links the infinitesimal description of the process (the
generator) to the evolution of the process over time (the semigroup). Since
usually only the generator is known explicitly, we will discuss how one de-
duces properties of the process from information about the generator. The
main examples at this point are variants of Brownian motion, in which the
relative speed of the particle varies spatially, and/or there is a special be-
havior at the boundary of the state space.

As an application of the theory of semigroups and generators, we then
provide an introduction to a somewhat more recently developed area of prob-
ability theory — interacting particle systems. This is a class of probabilistic
models that come up in many areas of application — physics, biology, com-
puter science, and even a bit in economics and sociology. Infinitely many
agents evolve in time according to certain probabilistic rules that involve
interactions among the agents. The nature of these rules is dictated by the
area of application. The main issue here is the nature of the long time
behavior of the process.
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Next we give an introduction to stochastic integration with respect to
Brownian motion and other continuous (semi)martingales. Not only is this
an important probabilistic tool, but in recent years, it has become an es-
sential part of financial mathematics. We define the It0 integral and study
its properties, which are quite different from those of ordinary integrals, as
a consequence of the lack of smoothness of Brownian paths. Then we use
it to construct local time for Brownian motion, and apply it to give a new
perspective on some of the Brownian relatives from Chapter 3.

In the final chapter, we return to Brownian motion, now in higher dimen-
sions, and describe one of its great successes in analysis — that of providing
a probabilistic solution to the classical Dirichlet problem. This problem asks
for harmonic functions (those satisfying Ah = 0) in a domain in R™ with pre-
scribed boundary values. Then we discuss the Poisson equation %Ah =—f.
Solutions to the Dirichlet problem and Poisson equation provide concrete
answers to many problems involving Brownian motion in R". Examples are
exit distributions from domains, and expected occupation times of subsets
prior to exiting a domain.

The prerequisite for reading this book is a semester course in measure-
theoretic probability that includes the material in the first four chapters of
[18], for example. In particular, students should be familiar with laws of
large numbers, central limit theorems, random walks, the basics of discrete
time Markov chains, and discrete time martingales. To facilitate referring
to this material, T have included the main definitions and results (mostly
without proofs) in the Appendix. Approximately 200 exercises are placed
within the sections as the relevant material is covered.

Chapters 1 and 2 are largely independent of one another, but should
be read before Chapter 3. They provide motivation for the more abstract
treatment of Feller processes there. The main places where Chapter 2 re-
lies on material from Chapter 1 are in the discussions of the Markov and
strong Markov properties. Rather than prove these in some generality, our
approach is to prove them in the concrete context of Brownian motion.
By making explicit the properties of Brownian motion that are used in the
proofs, we are able simply to refer back to those proofs when these properties
are discussed in Chapters 2 and 3.

The hearts of Chapters 2 and 3 are Sections 2.5 and 3.3 respectively. The
prior sections in these chapters are intended to provide motivation for the
transition from infinitesimal description to time evolution that is explained
in those sectons. Therefore, the earlier sections need not be covered in full
detail. In my classes, I often state the main results from the earlier sections
without proving many of them, in order to allow ample time for the more
important material in Sections 2.5 and 3.3.
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The last three chapters can be covered in any order. Chapters 5 and
6 rely only slightly on Chapters 2 and 3, so one can easily create a short
course based on Chapters 1, 5 and 6.

This book is based on courses I have taught at UCLA over many years.
Unlike many universities, UCLA operates on the quarter system. I have
typically covered most of the material in Chapters 1-3 and 6 in the third
quarter of the graduate probability course, and Chapters 4 and 5 in special
topics courses. There is more than enough material here for a semester
course, even if Chapter 1 is skipped because students are already familiar
with one-dimensional Brownian motion.

Despite my best efforts, some errors have probably made their way into
the text. I will maintain a list of corrections at

http://www.math.ucla.edu/ tml/

Readers are encouraged to send me corrections at tml@math.ucla.edu.

As is usually the case with a text of this type, I have benefitted greatly
from the work of previous authors, including those of [12], [18], [21], [22],
[39], and [40]. I appreciate the comments and corrections provided by
P. Caputo, S. Roch, and A. Vandenberg-Rodes, and especially T. Richtham-
mer and F. Zhang, who read much of this book very carefully.

Thomas M. Liggett
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Chapter 1

One-Dimensional
Brownian Motion

1.1. Some motivation

The biologist Robert Brown noticed almost two hundred years ago that bits
of pollen suspended in water undergo chaotic behavior. The bits of pollen
are much more massive than the molecules of water, but of course there are
many more of these molecules than there are bits of pollen. The chaotic
motion of the pollen is the result of many infinitesimal jolts by the water
molecules. By the central limit theorem (CLT), the law of the motion of
the pollen should be closely related to the normal distribution. We now call
this law Brownian motion.

During the past half century or so, Brownian motion has turned out
to be a very versatile tool for both theory and applications. As we will
see in Chapter 6, it provides a very elegant and general treatment of the
Dirichlet problem, which asks for harmonic functions on a domain with
prescribed boundary values. It is also the main building block for the theory
of stochastic calculus, which is the subject of Chapter 5. Via stochastic
calculus, it has played an important role in the development of financial
mathematics.

As we will see later in this chapter, Brownian paths are quite rough —
they are of unbounded variation in every time interval. Therefore, integrals
with respect to them cannot be defined in the Stieltjes sense. A new type
of integral must be defined, which carries the name of K. It6, and more
recently, of W. Doeblin. This new integral has some unexpected properties.
Here is an example: If B(t) is standard Brownian motion at time ¢ with
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2 1. One-Dimensional Brownian Motion

B(0) = 0, then

t
(1.1) /0 B(s)dB(s) = é[B'z(t) —t].

Of course, if B(t) could be used as an integrator in the Stieltjes sense, and
this were the Stieltjes integral, the right side would not contain the term —t.

There are also many important applications of Brownian motion con-
nected with the classical limit theorems of probability theory. If &,&s,...
are i.i.d. random variables with mean zero and variance one, and

Sn:§1+"'+£n
are their partial sums, the CLT says that S, //n converges in distribu-
tion to the standard normal law. How can one embed the CLT into a
more general theory that includes as one of its consequences the fact that
max{0, S1,...,5,}/v/n converges in distribution to the absolute value of a
standard normal? The answer involves Brownian motion in a crucial way,
as we will see later in this chapter. Here is an early hint: For ¢ > 0 and
n>1, let
Sing
vn'
where [-] is the integer part function. Then X, (1) = S, //n, and

max X (t) = max{O.Sl....,Sn}-
0<t<1 vn

So, we have written both functionals of the partial sums in terms of the
stochastic process X,,(t). Once we show that X,, converges in an appropriate
sense to Brownian motion, we will have a limit theorem for

max{0, S1,...,S.},

as well as for many other functions of the partial sums.

(1.2) Xn(t) =

This chapter represents but a very small introduction to a huge field.
For further reading, see [35] and [40].

1.2. The multivariate Gaussian distribution

Before defining Brownian motion, we will need to review the multivariate
Gaussian distribution. Recall that a random variable £ has the standard
Gaussian (or normal) distribution N(0,1) if it has density

1 6_1.2/2
V2T

It is said to be univariate Gaussian if it can be written in the form & = a( +b,
where ¢ is standard Gaussian and a,b are real. Note that this definition

—o0 < rxr<o00.



1.2. The multivariate Gaussian distribution 3

allows £ to have zero variance. The Gaussian distribution with mean m and
variance o2 (obtained above if b = m and a? = 0?) is denoted by N(m,c?).

Definition 1.1. The real random vector (&, ..., &,) is said to be multivari-
ate Gaussian if all linear combinations

n
5 ak€k
k=1
of the components have univariate Gaussian distributions.

Remark 1.2. (a) If &,...,§, are independent Gaussians, then (&;,...,&,)
is multivariate Gaussian.

(b) Definition 1.1 is much stronger than the statement that each & is
Gaussian. For example, suppose ( is standard Gaussian, and

e= T K=
—¢ if |¢| > 1.

Then £ is also standard Gaussian. However, since [( + & < 2 and ( + £ is
not constant, { + £ is not Gaussian, so ((,€) is not bivariate Gaussian.

Remark 1.3. Definition 1.1 has a number of advantages over the alterna-
tive, in which one specifies the joint density of (&1,...,&,):

(a) It does not require that (&1,...,&,) have a density. For example,
(&, €) is bivariate Gaussian if £ is Gaussian.

(b) It makes the next result immediate.

Proposition 1.4. Suppose £ = (£1,...,&,) is Gaussian and A is an m X n
matriz. Then the random vector ( = A€ is also Gaussian.

Proof. Any linear combination of (i,...,{, is some other linear combina-
tion of &1, ...,&,. O

An important property of a multivariate Gaussian vector £ is that its
distribution is determined by the mean vector E£ and the covariance matrix,
whose (4, j) entry is Cov(&;,&;). To check this statement, we use character-
istic functions. Recall that the characteristic function of a random variable
with the N(m,0?) distribution is

1
exp {itm — §t202}.

Therefore, if £ = (§1,...,&,) is multivariate Gaussian, its joint characteristic
function is given by

O(t1s.4:5tn Eexp{ thfj}—exp{ —%JQ}.
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where m and o? are the mean and variance of 3 7_, ¢;&;:

n n
m = thEfj and 0% = Z titg COV({j,fk).
j=1 k=1
Since ¢(t1,...,t,) depends on £ only through its mean vector and covari-
ance matrix, these determine the characteristic function of ¢, and hence its
distribution by Proposition A.24. This observation has the following conse-
quence:

Proposition 1.5. If¢ = (&1, ...,&,) is multivariate Gaussian, then the ran-
dom variables &1, . . ., &, are independent if and only if they are uncorrelated.

Proof. That independence implies uncorrelatedness is always true for ran-
dom variables with finite second moments. For the converse, suppose that
£1,...,& are uncorrelated, i.e., that Cov(&;,&) = 0 for j # k. Take

(1,...,(n to be independent, with {; having the same distribution as &;.
Then £ and ¢ = ((1,...,(n) have the same characteristic function, and
hence the same distribution, by Proposition A.24. It follows that &;,...,&,
are independent. O

The next exercise will be useful in Chapter 6 — see Proposition 6.12.

Exercise 1.6. Show that if £ = (&31,...,€&,), where &1,...,&, are i.i.d. stan-
dard Gaussian random variables, and O is an n X n orthogonal matrix, then
O¢ has the same distribution as £.

For the next exercise, recall that = denotes convergence in distribution
— see Definition A.18.

Exercise 1.7. (a) Suppose that & = ¢ and that & has the N(my,o03)
distribution for each k. Prove that £ is N(m,o?) for some m and o2, and
that mir — m and 0’,% — 0%, (Suggestion: First reduce the problem to
the mean zero case by symmetrization, i.e., consider & — &, where & is

independent of & and has the same distribution.)

(b) State an analogue of (a) for Gaussian random vectors, and prove it
using part (a). (Recall the Cramér-Wold device, Theorem A.26.)

The main topic of this book is a class of stochastic processes; in this
chapter, they are Gaussian. We conclude this section with formal definitions
of these concepts.

Definition 1.8. A stochastic process is a collection of random variables
indexed by time. It is a discrete time process if the index set is a subset
of the integers, and a continuous time process if the index set is [0, 00) (or
sometimes, (—o0,00)).
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1.4. Definition of Brownian motion

Definition 1.9. A stochastic process X (¢) is Gaussian if for any n > 1 and
any choice of times ty,...,t,, the random vector (X (¢1),...,X(t;)) has a
multivariate Gaussian distribution. Its mean and covariance functions are
EX(t) and Cov(X(s), X(t)) respectively.

1.3. Processes with stationary independent increments

As we will see shortly, Brownian motion is not only a Gaussian process,
but is a process with two other important properties — stationarity and
independence of its increments. Here is the relevant definition.

Definition 1.10. A stochastic process (X(t),t > 0) has stationary in-
crements if the distribution of X (¢#) — X(s) depends only on ¢t — s for
any 0 < s < t. It has independent increments if the random variables
{X(tj4+1) — X(t;),1 < j < n} are independent whenever 0 <t; <ty <--- <
tp, and n > 1.

The simplest process with stationary independent increments is the Pois-
son process N (t) with parameter A > 0. It has the following properties:

(i) N(t,w) is an increasing right continuous step function in ¢ with jumps
of size 1,
and

(ii) N(t) — N(s) is Poisson distributed with parameter \(t — s) for 0 <
s < t.
It can be constructed in the following way: Let 71,79, ... be independent and
identically distributed random variables that are exponentially distributed
with parameter A. Then let

(1.3) Nt)y=#{k>1:11+ -+ 71 < t}.

Exercise 1.11. With N(¢) defined as in (1.3), show that if 0 < s < ¢, then
N(s) and N (t)— N (s) are independent Poisson distributed random variables
with parameters As and A(¢ — s) respectively.

1.4. Definition of Brownian motion

To see that the properties introduced in the previous two sections are likely
to have a bearing on the definition of Brownian motion, note that the process
X, (t) defined in (1.2) has independent increments, and that except for the
effect of time discretization, it has stationary increments. Therefore, any
limit X (t) of X,,(t) as n — oo, if it exists in any reasonable sense, will have
stationary independent increments. Also, by the central limit theorem, X ()
will have the N(0,t) distribution. Thus, we would expect Brownian motion
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to be Gaussian and have stationary independent increments. The following
result relates these properties.

Proposition 1.12. The following two statements are equivalent for a sto-
chastic process (X (t),t > 0):

(a) X (t) has stationary independent increments, and X (t) is N(0,t) for
each t > 0.

(b) X(t) is a Gaussian process with EX(t) =0 and

Cov(X(s), X (1)) =sAt.

Proof. Suppose (a) holds. To show that the process is Gaussian, take a;’s
and t;’s as required in Definitions 1.1 and 1.9. Without loss of generality,
we may assume that 0 = tg < t; < --- < t,,. Summing by parts, and using
X (0) = 0, we see that there are b;’s so that

X (te) =) be[X(te) — X(te1)].
k=1 k=1

The right side is a sum of independent Gaussians, and hence is Gaussian.
To check the covariance statement, take s < t and write

Cov(X(s), X(t)) = EX(s)X(t)
= EX(s)[X(t) — X(s)] + EX?(s)
=s=sAt.

For the converse, assume (b). Then for s < t, X (t) — X (s) is Gaussian
with mean zero and

Var(X(t) — X(s)) =t —2(sA\t)+s=1t—s,
so the process has stationary increments and has the correct marginal dis-
tributions.
To check independence of the increments, take 0 < t] < to < -+ < t,,
and write the vector of increments in the form

(X(t2) = X(t1), -, X(tn) — X(tn-1)) = A(X(t1), ..., X (tn))

for an appropriately chosen matrix A. Therefore, by Proposition 1.4, the
vector of increments is Gaussian. So, in order to check the independence of
the increments, it is enough by Proposition 1.5 to show that the increments
are uncorrelated. To do so, take u < v < s < t. Then

Cov(X(v) — X(u), X(t) — X(s)) =vAt—vAs—uAt+uAs
=v—v—u+u=0. O



