ACM Doctoral Dissertation
Award 1986

Full Abstraction and
Semantic Equivalence
Ketan Mulmuley

The MIT Press

Full Abstraction and Semantic Equivalence

Ketan Mulmuley

The MIT Press
Cambridge, Massachusetts
London, England

This dissertation was submitted in August 85 to the Department of Computer Science, Carnegie-
Mellon University, in partial fulfillment of the requirements for the degree of Doctor of Philosophy.
The research reported in this document was supported in part by funds from the Computer Science
Department of Carnegie-Mellon University, and by the Defense Advanced Research Projects
Agency (DOD), ARPA Order No. 3597, monitored by the Air Force Avionics Laboratory under
Contract F33615-81-K-1539. The views and conclusions contained in it are those of the author and
should not be interpreted as representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the US Government.

The book was typeset by the author in LaTeX and printed on an Imagen Imprint-10 printer.
© 1987 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic or
mechanical means (including photocopying, recording, or information storage and retrieval)
without permission in writing from the publisher.

This book was printed and bound in the United States of America.
Library of Congress Cataloging-in-Publication Data

Mulmuley, Ketan.
Denotational and operational semantics.

(ACM doctoral dissertation awards; 1986)

Originally presented as the author’s thesis (Ph. D.—Carnegie-Mellon University, 1985) under
the title: Full abstraction and semantic equivalence.

1. Programming languages (Electronic computers)—Semantics. 1. Title. II. Series: ACM
doctoral disseration award; 1986.
QA76.7.M84 1987 005.13 86-33819
ISBN 0-262-13227-3

Full Abstraction and Semantic Equivalence

ACM Doctoral Dissertation Awards

1982

Area-Efficient VLSI Computation

by Charles Eric Leiserson

1983

Generating Language-Based Environments
by Thomas W. Reps

1984

Reduced Instruction Set Computer Architectures for VLSI
by Manolis G. H. Katevenis

1985

Bulldog: A compiler for VLIW A«chitectures
by John R. Ellis

1986

Full Abstraction and Semantic Equivalence
by Ketan Mulmuley

Computational Limitations of Small Depth Circuits
by Johan Hastad

To my parents

SERIES FOREWORD

The Doctoral Dissertation Award is presented each year by the Association for
Computing Machinery (ACM). This award recognizes the best dissertation written
in a computer-related field during the previous year. The winning author receives a
cash award of $1000 from ACM. In addition, the winning dissertation is published
by MIT Press, with the author receiving the appropriate royalties.

Since its inception in 1982, the award has gained additional prestige with in-
creased competition. Every spring, each computer-related department is asked to
submit its best doctoral dissertation produced during the previous year. Each sub-
mission is examined by four external expert reviewers. Based upon these reviews,
five dissertations are selected for the final round of competition. The final five dis-
sertations are all reviewed by the each of the six members of the selection committee.
This committee determines the award winner.

This year forty-four dissertations were submitted. The selection committee was
composed of Doug DeGroot, Larry Dowdy, David Johnson, Michael Marcotty, Fred
Maryanski, and Jack Minker. Unlike previous years, co-winners of the award were
selected. This decision was based upon the unique and significant contributions of
each. The co-winners are Ketan Mulmuley for his dissertation entitled “Full Ab-
straction and Semantic Equivalence” and Johan Hastad for his dissertation entitled
“Computational Limitations for Small Depth Circuits” . Dr. Mulmuley’s work was
supervised by Professor Dana Scott at Carnegie-Mellon University. Dr. Hastad’s
work was supervised by Professor Shafi Goldwasser at the Massachusetts Institute
of Technology.

This book presents Mulmuley’s thesis. It provides important advances in the
semantics of programming languages and in automated theorem proving. The thesis
solves a major open problem in the field of denotational semantics, that of finding
fully abstract models of the typed lambda calculus. Proving such existences are
quite detailed and researchers have long expressed a need for a mechanized method
to handle most of the details. Mulmuley provides and implements such a mechanized
method. This method is a major step in constructing automated theorem provers for
denotational semantics. Mulmuley’s contributions to the field are truly outstanding.

Larry Dowdy, Chairman
ACM Doctoral Dissertation Award Subcommittee

Preface

This thesis studies the relationship between denotational and operational se-
mantics of a language. There are two important problems which arise in
this context: the problem of full abstraction and the problem of semantic
equivalence. We are concerned here with the Scott-Strachey approach to pro-
gramming language semantics. In this approach, a language is given semantics
by mapping each language construct to its meaning in an appropriately con-
structed mathematical domain — this map is called a denotational semantics
of the language. The map is denotational in the sense that the denotation of
a complex term depends only on the denotations of its constituents and not
on their structure. Of course, if the language is to be of any use at all, it must
also have an operational semantics. Generally this operational semantics is
specified in terms of a compiler or an interpreter.

The first question which arises is: are the denotational and operational
semantics equivalent? This is the problem of semantic equivalence. Milne
and Reynolds gave a general technique for proving such semantic equivalences.
Their technique involves constructing certain predicates, called inclusive pred-
icates, which connect the domains used for denotational and operational se-
mantics. The most difficult part of their technique is showing the existence of
such inclusive predicates. Unfortunately these existence proofs are known to
be quite complicated, hence one is reluctant to carry out these proofs. More-
over, so far one did not know any nontrivial example of a system of equations
over inclusive predicates which does not have a solution. In the absence of
such a counterexample it does not seem justified to carry out the complicated
existence proofs with all their details. In this thesis we shall construct such a
counterexample through diagonalization. This means one must carry out the
existence proofs with care. It has been suspected for some time that much
simpler methods for proving these existences will be discovered. For exam-
ple, several people suggested that there might be a language which can define
most of the frequently arising predicates. Unfortunately the above mentioned
counterexample shows that there are some fundamental difficulties in doing
this. However, in this thesis we shall give a theory to prove such semantic
equivalences which has the distinct advantage of being mechanizable. In fact,
a system, which we shall call IPL (Inclusive Predicate Logic), was imple-

mented on top of LCF which can almost automatically prove the existence of
most of the inclusive predicates which arise in practice.

Another issue this thesis deals with is the one of full abstraction. A model
of a programming language is said to be fully abstract if denotations of two
language constructs are equal whenever those constructs behave the same in
all programming contexts and vice versa. For a special case of typed lambda
calculus, PCF, it was shown by Plotkin that the classical model consisting of
all continuous functions is not fully abstract. (See [Plotkinl]). However, he
was able to make the model fully abstract by adding to the language a new
programming construct which provided a parallel or facility. Milner showed
that, under reasonable assumptions, typed lambda calculus has a unique fully
abstract, extensional model, and he constructed the model syntactically. (See
[Milner].) (A model is said to be extensional if any object of a higher type
is uniquely determined by its action on the objects of an appropriate lower
type.) In this thesis we shall connect Milner’s model to the classical model.
We shall show that one can construct an extensional, fully abstract and alge-
braic model of typed lambda calculus which is a homomorphic retraction (or
a submodel) of the classical model, if the classical model is based on complete
lattices. Milner’s unique fully abstract model, which is based on consistently
complete cpos instead of complete lattices, can be recovered from our fully
abstract submodel in a very simple way. As a fully abstract model reflects the
operational behaviour of the language precisely, our result says that the lat-
tice theoretic model of a typed lambda calculus already contains within itself
a submodel which precisely reflects the operational behaviour. This is par-
ticularly surprising as the lattice-theoretic models are generally constructed
without giving much attention to the operational semantics of a language.
Moreover, we shall show that the theory can extended to the case when a lan-
guage has reflexive (i.e. recursively defined) types. This is important as most
of the ‘real’ programming languages have recursively defined types. One dis-
tinguishing feature of this theory is that it uses the same inclusive predicates,
which can be used to show the semantic equivalence between denotational
and operational semantics, to construct fully abstract, extensional submodels.
This strengthens our belief that the proofs of semantic equivalence and full
abstraction go hand in hand.

The outline of the thesis is as follows.
In Chapter 1 we provide an introduction to Scott’s theory of domains.
In Chapter 2 we introduce the problem of inclusive predicate existence.

We also present here the counterexamples using diagonalization and self ap-
plication to show that this existence problem is indeed nontrivial.

In Chapter 3 we show how useful inclusive predicates can be, when they
exist. Using certain inclusive predicates, we construct for typed lambda cal-
culi fully abstract, extensional, algebraic submodels of their lattice theoretic
models. We shall also see how Milner’s unique fully abstract model, which is
based on consistently complete cpos instead of lattices, can be recovered from
our fully abstract submodel in a very simple way.

In Chapter 4 we extend the theory of Chapter 3 to the case when the
language has reflexive types.

In Chapter 5 we give a mechanizable theory for proving the existence of
inclusive predicates.

In Chapter 6 we describe the system IPL (Inclusive Predicate Logic) which
mechanizes and automates the theory of Chapter 5.

Finally Chapter 7 lists some open problems and the directions for future
research.

Acknowledgements

I am deeply grateful to my advisor Prof. Dana Scott who introduced me to
the field of semantics and whose innumerable invaluable suggestions always
kept me on a right track. Without his able guidance this thesis would simply
not have resulted. Very very special thanks to Steve Brookes with whom I
had several illuminating discussions. He went through the thesis very carefully
and provided lots of useful suggestions. I also wish to thank Mike Gordon,
Gordon Plotkin, Rick Statman and Glynn Winskel whose criticisms have been
of a great value to me. A special mention must be made of Roberto Minio
who was always willing to help me in typesetting the thesis.

Needless to say, I am most grateful to the CMU computer science depart-
ment for providing such a wonderful research community and environment.

Full Abstraction and Semantic Equivalence

Contents

1 Domain Theory

1.1
1.2
1.3

14
1.5
1.6
1.7
1.8

Complete Partial Order eme Ry
Mappings Between CPOs
Functors On The Category OfCPOs
1.31 Product
1.3.2 Sum . . . e e e e e e e e e e e e e e e
1.3.3 Exponentiation
134 Liff o s su v a5 0 am s 55 66 56 685 @ 5 66 @4 &6
Fixpolnt Map « v s s s s 55 5 5 5 8 5 o4 65 2 0 &8 5 & & 4
Domains e e e e
Embeddings And Projections
Universal Domain.
Domain Equations

2 Existence Of Predicates

2.1
2.2
2.3
2.4

3.1
3.2
3.3
3.4
3.5

Introduction. e
A Simple Language i i it ittt e
Semantic Equivalence
Diagonalization And Self Application.
24.1 Example.

Fully Abstract Submodels I

Introduction i i i it e e e e e e e e
Typed Lambda Calculus
What Is A Submodel?
Construction Of A Submodel
A finite approximatemodel

00 ~J ~I O U1 v W W

e
- O

13
13
14
15
19
20

CONTENTS

3.6 Limit Construction, 46
BT POE i v s w66 6§ 56 9% 98 5 5.5 B 58 S8 » § 8 8@ 58 5 0 53
3.8 Discussion i ittt e e e e e e e e e e 57
Fully Abstract Submodels II 59
4.1 Reflexive Types o v i i i i i e e e e e e e e 59
4.2 The CollapsedModel 63
4.3 Relation With The Nonreflexive Model 64
4.4 Relating Different Closures 70
4.5 Continuity Argument 000000 72
46 ConclusioN s s e s o5 w6 5 6 6 55 88 8% 96 s 85 &6 5 5 o 76
A Mechanizable Theory . 79
5.1 Milne’s and Reynolds’ Techniques 79
5.2 Outline Of The Theory 81
5.3 Predicate CPOs. i i it i ittt e 84
5.4 Predicators e e e e e 89
5.4.1 A Language For Predicate Transformation. 89
5.4.2 Interpretation Of The Language 92
5.5 Predicator Specification 93
5.6 Reduction Algorithm 96
56.1 Reducel it uuunnnenenn 99
56.2 Reduce2 i tuununnnn 102
5.7 Examples e e e e e e e 104
5.7.1 (—,arrow)predicator 105
5.7.2 (+,sum)predicator 105
5.7.3 (Cont,cont) predicator 106
5.7.4 Continuation Of An Earlier Example 107
5.8 Continuous Constructors 110
58.1 Example. 118
IPL Implementation 121
6.1 A Brief Overview OfLCF 121
6.2 TPL Design i i v i ittt uumataeennens 125
6.2.1 Goal Generatort 125
6.2.2 IPLAMBDA @ . @ i ittt e e 126
6.2.3 Automatic Theorem Provers 129

6.3 Examples 00 i i it 134

CONTENTS

631 Examplel. it tieneenon 134

63.2 Example2., 137

7 Conclusion 141
A ML Code Of IPL 145
Al Theory Udom iiuuneneeieiei.o.. 146
A.2 Theory PrRetract. 150
A3 Goal Generator i i e e e e 157
A3.1 Example. i e e e e e e e e 160

A4 Theorem Provers @ i i i i iiuenn.. 178

A5 An Example RunOfIPL 191

Chapter 1

Domain Theory

In the Scott-Strachey approach to programming language semantics a lan-
guage is given a semantics by mapping each of its syntactic constructs into
a set of mathematical domains. The hope is that one will be able to reason
about programming language constructs by using the properties of these do-
mains. Naturally the success of the approach depends upon how nice and
convenient the mathematical properties of these domains are, and whether
these domains are powerful and general enough to be used in giving semantics
to a large class of programming languages. The domain theory of Scott is a
theory of constructing domains meeting the above demands. We shall provide
a brief overview of that theory in this chapter. All of the material in this
chapter can be found in [Scottl].

1.1 Complete Partial Order

The domains used in giving denotational semantics to programming languages
are in technical language complete partial orders. We shall introduce in this
section the notion of a complete partial order.

By a partial order we shall mean a transitive, reflexive, antisymmetric
relation. A partially ordered set S is called directed if, for any z,y € S, there
exists a z € S such that z C z and y C z, i.e., any two elements of S have an
upper bound in S.

A partially order set D is called a complete partial order (cpo) if it has a
least element, which we shall call 1, and any directed subset of D has a least
upper bound (lub) in D. Note that least elements and lubs are unique.

2 CHAPTER 1. DOMAIN THEORY

Rather trivial examples of cpos are Bool and Int as shown below. (In the
diagrams we assume that the ordering ‘increases’ in the upward direction.)

tt ff 0 1 2
1 1
Bool Int

For a more nontrivial example, consider any set X. Then P(X), the pow-
erset of X, is a cpo under the usual subset relationship ordering. A cpo should
be visualized as follows:

1.2 Mappings Between CPOs

Given two cpos C and D, a function f from C to D is called monotonic if,
whenever zC y in C, f(z) C f(y) in D.

A monotone function f is called continuous if, for any directed subset S
of C, f(lub(S)) = lub(f(S)). (Note that monotonicity of f implies that f(S)
is directed whenever S is.)

As cpos are closed under the lub operation on directed sets, a continuous
function is the most natural notion of a morphism on cpos. Technically, if
we take cpos as objects and continuous functions on them as morphisms, we
get a category which we shall call the category of cpos. (For an elementary
introduction to category theory see [Arbib].)

If C and D are cpos then we shall denote by C — D the set of continous
functions from C to D. Under the pointwise ordering C — D is a cpo if C
and D are. We shall see later how we can actually regard — as a functor on
the category of cpos.

Given a continous function f from D to D, z € D is called a fixpoint of f

if f(2) = =.

