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SERIES FOREWORD

The Doctoral Dissertation Award is presented each year by the Association for
Computing Machinery (ACM). This award recognizes the best dissertation written
in a computer-related field during the previous year. The winning author receives a
cash award of $1000 from ACM. In addition, the winning dissertation is published
by MIT Press, with the author receiving the appropriate royalties.

Since its inception in 1982, the award has gained additional prestige with in-
creased competition. Every spring, each computer-related department is asked to
submit its best doctoral dissertation produced during the previous year. Each sub-
mission is examined by four external expert reviewers. Based upon these reviews,
five dissertations are selected for the final round of competition. The final five dis-
sertations are all reviewed by the each of the six members of the selection committee.
This committee determines the award winner.

This year forty-four dissertations were submitted. The selection committee was
composed of Doug DeGroot, Larry Dowdy, David Johnson, Michael Marcotty, Fred
Maryanski, and Jack Minker. Unlike previous years, co-winners of the award were
selected. This decision was based upon the unique and significant contributions of
each. The co-winners are Ketan Mulmuley for his dissertation entitled “Full Ab-
straction and Semantic Equivalence” and Johan Hastad for his dissertation entitled
“Computational Limitations for Small Depth Circuits” . Dr. Mulmuley’s work was
supervised by Professor Dana Scott at Carnegie-Mellon University. Dr. Hastad’s
work was supervised by Professor Shafi Goldwasser at the Massachusetts Institute
of Technology.

This book presents Mulmuley’s thesis. It provides important advances in the
semantics of programming languages and in automated theorem proving. The thesis
solves a major open problem in the field of denotational semantics, that of finding
fully abstract models of the typed lambda calculus. Proving such existences are
quite detailed and researchers have long expressed a need for a mechanized method
to handle most of the details. Mulmuley provides and implements such a mechanized
method. This method is a major step in constructing automated theorem provers for
denotational semantics. Mulmuley’s contributions to the field are truly outstanding.

Larry Dowdy, Chairman
ACM Doctoral Dissertation Award Subcommittee



Preface

This thesis studies the relationship between denotational and operational se-
mantics of a language. There are two important problems which arise in
this context: the problem of full abstraction and the problem of semantic
equivalence. We are concerned here with the Scott-Strachey approach to pro-
gramming language semantics. In this approach, a language is given semantics
by mapping each language construct to its meaning in an appropriately con-
structed mathematical domain — this map is called a denotational semantics
of the language. The map is denotational in the sense that the denotation of
a complex term depends only on the denotations of its constituents and not
on their structure. Of course, if the language is to be of any use at all, it must
also have an operational semantics. Generally this operational semantics is
specified in terms of a compiler or an interpreter.

The first question which arises is: are the denotational and operational
semantics equivalent? This is the problem of semantic equivalence. Milne
and Reynolds gave a general technique for proving such semantic equivalences.
Their technique involves constructing certain predicates, called inclusive pred-
icates, which connect the domains used for denotational and operational se-
mantics. The most difficult part of their technique is showing the existence of
such inclusive predicates. Unfortunately these existence proofs are known to
be quite complicated, hence one is reluctant to carry out these proofs. More-
over, so far one did not know any nontrivial example of a system of equations
over inclusive predicates which does not have a solution. In the absence of
such a counterexample it does not seem justified to carry out the complicated
existence proofs with all their details. In this thesis we shall construct such a
counterexample through diagonalization. This means one must carry out the
existence proofs with care. It has been suspected for some time that much
simpler methods for proving these existences will be discovered. For exam-
ple, several people suggested that there might be a language which can define
most of the frequently arising predicates. Unfortunately the above mentioned
counterexample shows that there are some fundamental difficulties in doing
this. However, in this thesis we shall give a theory to prove such semantic
equivalences which has the distinct advantage of being mechanizable. In fact,
a system, which we shall call IPL ( Inclusive Predicate Logic), was imple-



mented on top of LCF which can almost automatically prove the existence of
most of the inclusive predicates which arise in practice.

Another issue this thesis deals with is the one of full abstraction. A model
of a programming language is said to be fully abstract if denotations of two
language constructs are equal whenever those constructs behave the same in
all programming contexts and vice versa. For a special case of typed lambda
calculus, PCF, it was shown by Plotkin that the classical model consisting of
all continuous functions is not fully abstract. (See [Plotkinl]). However, he
was able to make the model fully abstract by adding to the language a new
programming construct which provided a parallel or facility. Milner showed
that, under reasonable assumptions, typed lambda calculus has a unique fully
abstract, extensional model, and he constructed the model syntactically. (See
[Milner].) (A model is said to be extensional if any object of a higher type
is uniquely determined by its action on the objects of an appropriate lower
type.) In this thesis we shall connect Milner’s model to the classical model.
We shall show that one can construct an extensional, fully abstract and alge-
braic model of typed lambda calculus which is a homomorphic retraction (or
a submodel) of the classical model, if the classical model is based on complete
lattices. Milner’s unique fully abstract model, which is based on consistently
complete cpos instead of complete lattices, can be recovered from our fully
abstract submodel in a very simple way. As a fully abstract model reflects the
operational behaviour of the language precisely, our result says that the lat-
tice theoretic model of a typed lambda calculus already contains within itself
a submodel which precisely reflects the operational behaviour. This is par-
ticularly surprising as the lattice-theoretic models are generally constructed
without giving much attention to the operational semantics of a language.
Moreover, we shall show that the theory can extended to the case when a lan-
guage has reflexive (i.e. recursively defined) types. This is important as most
of the ‘real’ programming languages have recursively defined types. One dis-
tinguishing feature of this theory is that it uses the same inclusive predicates,
which can be used to show the semantic equivalence between denotational
and operational semantics, to construct fully abstract, extensional submodels.
This strengthens our belief that the proofs of semantic equivalence and full
abstraction go hand in hand.

The outline of the thesis is as follows.
In Chapter 1 we provide an introduction to Scott’s theory of domains.
In Chapter 2 we introduce the problem of inclusive predicate existence.



We also present here the counterexamples using diagonalization and self ap-
plication to show that this existence problem is indeed nontrivial.

In Chapter 3 we show how useful inclusive predicates can be, when they
exist. Using certain inclusive predicates, we construct for typed lambda cal-
culi fully abstract, extensional, algebraic submodels of their lattice theoretic
models. We shall also see how Milner’s unique fully abstract model, which is
based on consistently complete cpos instead of lattices, can be recovered from
our fully abstract submodel in a very simple way.

In Chapter 4 we extend the theory of Chapter 3 to the case when the
language has reflexive types.

In Chapter 5 we give a mechanizable theory for proving the existence of
inclusive predicates.

In Chapter 6 we describe the system IPL (Inclusive Predicate Logic) which
mechanizes and automates the theory of Chapter 5.

Finally Chapter 7 lists some open problems and the directions for future
research.
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Chapter 1

Domain Theory

In the Scott-Strachey approach to programming language semantics a lan-
guage is given a semantics by mapping each of its syntactic constructs into
a set of mathematical domains. The hope is that one will be able to reason
about programming language constructs by using the properties of these do-
mains. Naturally the success of the approach depends upon how nice and
convenient the mathematical properties of these domains are, and whether
these domains are powerful and general enough to be used in giving semantics
to a large class of programming languages. The domain theory of Scott is a
theory of constructing domains meeting the above demands. We shall provide
a brief overview of that theory in this chapter. All of the material in this
chapter can be found in [Scottl].

1.1 Complete Partial Order

The domains used in giving denotational semantics to programming languages
are in technical language complete partial orders. We shall introduce in this
section the notion of a complete partial order.

By a partial order we shall mean a transitive, reflexive, antisymmetric
relation. A partially ordered set S is called directed if, for any z,y € S, there
exists a z € S such that z C z and y C z, i.e., any two elements of S have an
upper bound in S.

A partially order set D is called a complete partial order (cpo) if it has a
least element, which we shall call 1, and any directed subset of D has a least
upper bound (lub) in D. Note that least elements and lubs are unique.



2 CHAPTER 1. DOMAIN THEORY

Rather trivial examples of cpos are Bool and Int as shown below. (In the
diagrams we assume that the ordering ‘increases’ in the upward direction.)

tt ff 0 1 2
1 1
Bool Int

For a more nontrivial example, consider any set X. Then P(X), the pow-
erset of X, is a cpo under the usual subset relationship ordering. A cpo should
be visualized as follows:

1.2 Mappings Between CPOs

Given two cpos C and D, a function f from C to D is called monotonic if,
whenever zC y in C, f(z) C f(y) in D.

A monotone function f is called continuous if, for any directed subset S
of C, f(lub(S)) = lub(f(S)). (Note that monotonicity of f implies that f(S)
is directed whenever S is.)

As cpos are closed under the lub operation on directed sets, a continuous
function is the most natural notion of a morphism on cpos. Technically, if
we take cpos as objects and continuous functions on them as morphisms, we
get a category which we shall call the category of cpos. (For an elementary
introduction to category theory see [Arbib].)

If C and D are cpos then we shall denote by C — D the set of continous
functions from C to D. Under the pointwise ordering C — D is a cpo if C
and D are. We shall see later how we can actually regard — as a functor on
the category of cpos.

Given a continous function f from D to D, z € D is called a fixpoint of f

if f(2) = =.



