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Preface

“... nothing at all takes place in the universe in which some rule of maximum
or minimum does not appear.” So said Euler in the eighteenth century. The
statement may strike us as extreme, yet it is undeniable that humankind’s
endeavors at least are usually associated with a quest for an optimum. This
may serve to explain why there has been an enduring symbiosis between
mathematical theories of optimization and the applications of mathematics,
even though the forms of the problems (the “paradigms”) being considered
evolve in time.

The origins of analytic optimization lie in the classical calculus of variations
and are intertwined with the development of the calculus. For this reason,
perhaps, optimization theory has been slow to shed the strong smoothness (i.e.,
differentiability) hypotheses that were made at its inception. The attempts to
weaken these smoothness requirements have often been ad hoc in nature and
motivated by the needs of a discipline other than mathematics (e.g., engineer-
ing). In this book a general theory of nonsmooth analysis and geometry will be
developed which, with its associated techniques, is capable of successful
application to the spectrum of problems encountered in optimization. This
leads not only to new results but to powerful versions of known ones. In
consequence, the approach taken here is of interest even in the context of
traditional, smooth problems in the calculus of variations, in optimal control,
or in mathematical programming.

This book is meant to be useful to several types of readers. An effort is
made to identify and focus upon the central issues in optimization, and results
of considerable generality concerning these issues are presented. Because of
this, although its scope is not encyclopedic, the work can serve as a reference
text for those in any of the various fields that use optimization. An effort has
been made to make the results accessible to those who are not expert in the
subject. Thus the first chapter is devoted to an explanation and overview of the
book’s contents. Here and elsewhere the reader will find examples drawn from
economics, engineering, mathematical physics, and various branches of analy-
SiS.

The reader who wishes not only to gain access to the main results in the
book but also to follow all the proofs will require a graduate-level knowledge

vil



viii Preface

of real and functional analysis. With this prerequisite, an advanced course in
optimization can be based upon the book. The remaining type of reader we
have in mind is the expert, who will discover, we believe, interesting tools and
techniques of nonsmooth analysis and optimization.

FRANK H. CLARKE

Vancouver, British Columbia
March 1983
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Chapter One

Introduction and Preview

In adolescence, I hated life and was continually on the verge of suicide, from which,
however, I was restrained by the desire to know more mathematics.

BERTRAND RUSSELL, The Conquest of Happiness

Just as “nonlinear” is understood in mathematics to mean “not necessarily
linear,” we intend the term “nonsmooth” to refer to certain situations in which
smoothness (differentiability) of the data is not necessarily postulated. One of
the purposes of this book is to demonstrate that much of optimization and
analysis which have evolved under traditional smoothness assumptions can be
developed in a general nonsmooth setting; another purpose is to point out the
benefits of doing so. We shall make the following points:

1. Nonsmooth phenomena in mathematics and optimization occur natu-
rally and frequently, and there is a need to be able to deal with them.
We are thus led to study differential properties of nondifferentiable
functions.

2. There is a recent body of theory (nonsmooth analysis) and associated
techniques which are well suited to this purpose.

3. The interest and the utility of the tools and methods of nonsmooth
analysis and optimization are not confined to situations in which
nonsmoothness is present.

Our complete argument in support of these contentions is the entirety of
this book. In this chapter we get under way with a nontechnical overview of
the theory and some of its applications. The final sections are devoted to
placing in context the book’s contributions to dynamic optimization (i.e., the

1



2 Introduction and Preview

calculus of variations and optimal control), the single largest topic with which
it deals.

1.1 EXAMPLES IN NONSMOOTH ANALYSIS AND
OPTIMIZATION

For purposes of exposition, it is convenient to define five categories of
examples.

1.1.1 Existing Mathematical Constructs

The first example is familiar to anyone who has had to prepare a laboratory
report for a physics or chemistry class. Suppose that a set of observed data
points (xq, ¥y), (X, ¥1),--.,(Xy, yy) in the x-y plane is given, and consider the
problem of determining the straight line in the x-y plane that best fits the data.
Assuming that the given data points do not all lie on a certain line (any lab
instructor would be suspicious if they did), the notion of “best” must be
defined, and any choice is arbitrary. For a given line y = mx + b, the error e,
at the ith data point (x,, y,) is defined to be |mx, + b — y,|. A common
definition of best approximating line requires that the slope m and the
intercept b minimize (L ,e?}'/? over all m and b (or, equivalently, ¥V e2). On
the face of it, it seems at least as natural to ask instead that the total error
YN ,e; be minimized. The characteristics of the resulting solution certainly
differ. In Figure 1.1, for example, the dashed line represents the “least total
error” solution (see Example 2.3.17), and the solid line represents the “least
total square error” solution. Note that the former ignores the anomalous data
point which presumably corresponds to a gross measurement error. The least
squares solution, in contrast, is greatly affected by that point. One or the other
of these solutions may be preferable; the point we wish to make is that the
function £~ ;e; is nondifferentiable as a function of m and b. Thus the usual
methods for minimizing differentiable functions would be inapplicable to this
function, and different methods would have to be used. Of course, the reason
that the least square definition is the common one is that it leads to the
minimization of a smooth function of m and b.

The two functions being minimized above are actually special cases of the
L? and L' norms. The differentiability (or otherwise) of norms and of other
classes of functions has been and remains a central problem in functional
analysis. One of the first results in this area is due to Banach, who char-
acterized the continuous functions x on [0, 1] at which the supremum norm

llx[l:= max |x(¢)]

sIis

is differentiable. (His result is rederived in Section 2.8.)



1.1 Examples in Nonsmooth Analysis and Optimization 3

An interesting example of a nondifferentiable function is the distance
function d of a nonempty closed subset C of R”. This is the function defined
by

d-(x):=min{x — ¢|: c € C),

where | - | refers to the Euclidean norm. (It is a consequence of the results of
Section 2.5 that when C is convex, for example, d - must fail to be differentia-
ble at any point on the boundary of C.) The distance function has been a
useful tool in the geometrical theory of Banach spaces; it will serve us as well,
acting as a bridge between the analytic and the geometric concepts developed
later. As an illustration, consider the natural attempt to define directions of
tangency to C, at a point x lying in C, as the vectors v satisfying d(x; v) = 0,
where the notation refers to the customary one-sided directional derivative.
Since such directional derivatives do not necessarily exist (unless extra smooth-
ness or convexity hypotheses are made), this approach is only feasible (see
Section 2.4) when an appropriate nonsmooth calculus exists.
As a final example in this category, consider the initial-value problem

—x(t) = f(t,x(1)), x(0) = u.

d | | A
0/-/ ! ! 1 1 7 >
7 0 | 2 3 4 5 6 X

Figure 1.1 Two lines fitted to six data points (indicated by circles).



4 Introduction and Preview

It is well known that the natural framework for studying existence and
uniqueness of solutions is that of functions f which satisfy a Lipschitz condi-
tion in the x variable. It is desirable, then, to be able to study in this same
framework the closely related issue of how solutions depend on the initial value
u. The classical theory, however, hinges upon the resolvent, which is defined in
terms of derivatives of f. This confines the analysis to smooth functions f. In
Section 7.4 we extend the theory to the Lipschitz setting.

1.1.2  Direction Phenomena

Consider an elastic band whose upper end is fixed, and whose lower end is tied
to a unit point mass. When the band is stretched a positive amount x, it exerts
an upward (restoring) force proportional to x (Hooke’s Law). When un-
stretched, no force is exerted. (This contrasts to a spring, which also exerts a
restoring force when compressed.) If the mass is oscillating vertically, and if
x (1) measures the (positive or negative) amount by which the distance from the
mass to the upper end of the band exceeds the natural (unstretched) length of
the band, Newton’s Law yields X(7) = f(x(t)), where f is given by

_ (g —kx ifx>
\ g if x <

(g 1s the acceleration of gravity, and k is the proportionality constant for
Hooke’s Law; friction and the weight of the band have been neglected.) Note
that the function f is continuous but not differentiable at 0.

As another example, consider a flat solar panel in space. When the sun’s
rays meet its surface, the energy produced is proportional to cos a, where a is
the (positive) angle of incidence (see Figure 1.2). When the panel’s back is
turned to the sun (i.e., when a exceeds 7/2), no energy is produced. It follows
then that the energy produced is proportional to the quantity f(«), where f is
given by

fa) = N

cos « 1f <m/2
0" itan e
This again is a function that fails to be differentiable.

As a last illustration in this category, consider the electrical circuit of Figure
1.3 consisting of a diode, a capacitor, and an impressed voltage. A diode is a
resistor whose resistance depends upon the direction of the current. If 7 is the
current and V is the voltage drop across the diode, one has the following
nonsmooth version of Ohm’s Law:



